Glass displays could also be built with water on the surface, as is the case with smart windows. It would be possible to "write" on these displays using an infrared laser: when water is vaporized by the laser, the writing on the display becomes visible at these points.
Last but not least, the TU Cluster of Excellence's research could be used in the field of hydrovoltaics. Similar to the principle of photovoltaics, which produces energy with the help of sunlight, water is used here. When a structure becomes wet and then dries again, as happens at high and low tide, the evaporation of the water molecules generates energy that could be used to charge batteries, for example. "The big advantage of this," explains Huber, "is that if there is no sunlight, photovoltaics won't work. If there is no wind, you can't use wind energy. But there will always be high and low tides, so hydrovoltaics can be used at all times."
The TU scientist began researching the topic of water 15 years ago and is still fascinated by the element: "Water played a major role in the first industrial revolution back in the 18th century, when it was used in machines such as steam locomotives. Now we are working on the next industrial revolution, so to speak, in which water is used in materials."