Jetzt zum Wintersemester für einen unserer internationalen englischsprachigen Masterstudiengänge bewerben. Bewerbungen sind bis zum 1. März möglich.

FSP Maritime Systems

Spokesperson: Prof. Sören Ehlers, ehlers(a)tuhh.de

Deputy Spokesperson: Dr.-Ing. Marc-André Pick, pick(a)tuhh.de

 

The maritime industry is a major national high-tech sector that operates successfully on a global scale in the fields of technology development, production, logistics and energy. In Germany, it comprises around 400,000 employees who generate an annual sales volume of around 50 billion euros (Report of the Federal Ministry for Economic Affairs and Energy on the Maritime Research Strategy 2025, page 4). The maritime industry is the logistical backbone of globalization with special significance for the port city of Hamburg.

Compared to land and air transport, maritime transport has the lowest CO2 footprint. Nevertheless, it is essential for climate protection to further reduce greenhouse gas and pollutant emissions, as maritime transport will increase by about 20 % by 2040, see BMWi report on the Maritime Research Strategy 2025 (page 5). In this context, it is necessary to base the intensive efforts to reduce greenhouse gas and pollutant emissions not on the current maritime transport volume, but to include the future impact on the environment due to the expected increase in maritime trade volume.  The FSP Green Maritime Technologies has long made an important contribution in this field.

Hamburg University of Technology is a leader in maritime research in Germany. In view of the challenges associated with the projected growth in maritime traffic, it is faced with the task of developing and introducing new technical solutions together with industry. On the one hand, this includes holistic developments of new environmentally friendly fuels, ship propulsion systems and structures, and materials. On the other hand, developments focus on ensuring the safety of people, ships and offshore structures, taking into account increasingly extreme weather events resulting from global warming.

The integration of "machine learning" methods and digitalization into the design and manufacturing process of maritime structures as well as into ship operation is the subject of research at TUHH, which requires corresponding strategic adjustments in education and research. Technological progress will enable autonomous navigation in the future, with far-reaching effects on the global economy and the environment.

For these reasons, the following research areas are in focus in TUHH's maritime field: shaping the energy transition in the maritime transport sector, expanding offshore wind capacity, improving maritime security, fully digitalized manufacturing, machine learning, Big Data, and autonomy capability above and below water. In addition to quite a few individual DFG projects, basic research includes member participation in various DFG-funded research training groups such as GRK 1096 "Seaports for Container Ships of Future Generations" and GRK 2462 "Processes in Natural and Engineered Particle-Fluid-Structure Interactions" (PintPFS).

In collaboration with the maritime industry, numerous research topics are being addressed to increase safety and economic efficiency as well as the environmental performance of ships and offshore structures. These research topics are funded by the European Union, the German Federal Ministry for Economic Affairs and Energy (BMWi), the German Federation of Industrial Research Associations (AIF), the Hanseatic City of Hamburg and the Hamburg Port Authority Hamburg (HPA), among others.

The master's degree programs in Shipbuilding and Ocean Engineering, Ship and Offshore Technology, Energy Engineering/Specialization in Marine Engineering, Theoretical Mechanical Engineering, Civil Engineering and Renewable Energies benefit from the close networking of basic and industry-related research.

Prof. Sören Ehlers

Research Center News

Current Projects (Highlights)

B5 Geotechnik und Baubetrieb

  1. Numerische Simulation der Ankereindringtiefe, Mittelgeber: 50hertz Transmission GmbH, Laufzeit: 2020-2022 (24 Monate), Projektleitung: Prof. Dr.-Ing. Jürgen Grabe (Link: https://www.tuhh.de/gbt/en/forschung/forschungsprojekte.html#c111329 )
  2. Investigation of gas migration as a triggering mechanism for submarine landslides on continental slopes, Mittelgeber: Deutsche Forschungsgemeinschaft (DFG), Förderkennzeichen: GR 1024/35-1, Laufzeit: 2019-2022 (33 Monate), Projektleitung: Prof. Dr.-Ing. Jürgen Grabe (Link: https://www.tuhh.de/gbt/en/forschung/forschungsprojekte.html#c111484 )
  3. Zukunft der Tideelbe im Klimawandel - Klimawandel und Hochwasserschutz, Mittelgeber: Umweltbundesamt (UBA), Förderkennzeichen: FKZ 37211482050, Laufzeit: 2022-2024 (36 Monate), Projektleitung: Prof. Dr.-Ing. Jürgen Grabe (Link: https://www.tuhh.de/gbt/en/forschung/forschungsprojekte.html#c125539 )

 

M10 Konstruktion und Festigkeit von Schiffen

  1. Modelling and simulation of cables with high-order finite elements, Mittelgeber: DFG, Förderkennzeichen: DU 405/14-1, Laufzeit: 1.2.2019 – 1.1.2021, Projektleitung: Alexander Düster (link: https://www2.tuhh.de/skf/modelling-and-simulation-of-cables-with-high-order-nite-elements/ )
  2. Fatigue of Thermal Cut Edges in Shipbuilding Steel Structures, Mittelgeber: Stiftung Stahlanwendungsforschung, Förderkennzeichen: AVIF A 319, Laufzeit: 1.1.2021 – 31.12.2022, Projektleitung: Sören Ehlers (Link: https://www2.tuhh.de/skf/fatigue-of-thermal-cut-edges-in-shipbuilding-steel-structures/ )
  3. MarTERA: HealthProp – Life Prediction and Health Monitoring of Marine Propulsion System under Ice Impact, Mittelgeber: BMWK, Förderkennzeichen: 03SX519B, Laufzeit: 1.6.2020 – 31.5.2023, Projektleitung: Franz von Bock und Polach (Link: https://www2.tuhh.de/skf/healthprop-life-prediction-and-health-monitoring-of-marine-propulsion-system-under-ice-impact/ )

 

M13 Mechanik und Meerestechnik

  1. Design und Analyse von Wellenenergiekonvertern, Projektleitung: Robert Seifried (Link: www.tuhh.de/mum/forschung/forschungsgebiete-und-projekte/design-und-analyse-von-wellenenergiekonvertern.html)
  2. Hydrobatic Micro Robots for Field Exploration in Hazardous Environments, Projektleitung: Robert Seifried (Link: https://www.tuhh.de/mum/forschung/forschungsgebiete-und-projekte/micro-underwater-robotics )

 

M14 Strukturdynamik

  1. EproBOSS - Echtzeitprognose der Bewegung von Offshore-Strukturen im Seegang; Nichtlineare Prognose von Seegang und Strukturbewegung, Wellenableitung und Implementierung, Laufzeit: 1.5.2020 – 30.04.2023, Mittelgeber: BMWK, Förderkennzeichen: 03SX510A, Projektleitung: Norbert Hoffmann und Marco Klein (Link: https://cgi.tu-harburg.de/~dynwww/cgi-bin/research/projects/eproboss )
  2. Erregbarkeit extremer Meereswellen - Numerische Vorhersage und Frühwarnung durch Kombination von Verfahren der Wellenphysik, der numerischen Simulation von Bewegungsgleichungen und datenbasierter Verfahren, 1.04.2022 – 30.9.2025, DFG, Projektnummer 277972093, Norbert Hoffmann (Link: https://cgi.tu-harburg.de/~dynwww/cgi-bin/research/projects/excitability-of-ocean-rogue-waves )
  3. Predicting Ship Hydrodynamics to Enable Autonomous Shipping: Nonlinear Physics and Machine Learning, 1.1.2022 – 31.12.2024, TUHH, Norbert Hoffmann (Link: https://cgi.tu-harburg.de/~dynwww/cgi-bin/research/projects/predicting-ship-hydrodynamics-to-enable-autonomous-shipping-nonlinear-physics-and-machine-learning )

 

M18 Produktionsmanagement und -technik

  1. smart.START – Smarte Inbetriebnahme mit digitalen Assistenzsystemen,  Laufzeit: 1.4.2020 – 31.03.2023, Mittelgeber: BMWK, Förderkennzeichen: 03SX503D, Projektleitung: Hermann Lödding
  2. Mari4_YARD – User-centric solutions for a flexible and modular manufacturing in small and medium-sized shipyards, Laufzeit: 1.12.2022 – 30.11.2024, Mittelgeber: Europäische Kommission, Förderkennzeichen: GA 101006798, Projektleitung: Hermann Lödding (link: https://www.mari4yard.eu/ )

 

M27 Produktions- und Fertigungstechnik

  1. IAMHH® - Industrialized Additive Manufacturing Hub Hamburg
Cooperations (Highlights)
Publications (Highlights)

B5 Geotechnik und Baubetrieb

  1. Dao D.A., Dicke K. and J. Grabe (2022): Investigation of anchor installation for floating offshore wind turbines. In: Proceedings of 10th International Conference on Physical Modelling in Geotechnics (ICPMG) 2022 in Daejon/Korea, Korea Geotechnical Society, M. Chung et al. (eds.), pp. 482-485, ISBN: 978-89-952197-7-5
  2. Kaminski P., Grabe J., Sager T.F. and M. Urlaub (2022): Decline in slope stability as a consequence of gassy soil in submarine slopes on the Balearic Promotory. In: Proceedings of 41th International Conference on Ocean, Offshore and Arctic Engineering (OMAE) 2022 in Hamburg/Germany, paper No. OMAE2022-81151, https://doi.org/10.1115/OMAE2022-81151
  3. Kaminski P., Sager T., Grabe J. und M. Urlaub (2021): A new methodology to assess the potential of conjectural trigger mechanisms of submarine landslides exempified by marine gas occurence on the Balearic Promonory. In: Engineering Geology 295:106446, https://doi.org/10.1016/j.enggeo.2021.106446

 

M10 Konstruktion und Festigkeit von Schiffen

  1. Erceg, S., Erceg, B., von Bock und Polach, F. & Ehlers, S. A simulation approach for local ice loads on ship structures in level ice. Mar. Struct. 81, 103117 (2022). https://doi.org/10.1016/j.marstruc.2021.103117
  2. Mul J. Lund, D. Ferreira González, J.C. Neitzel-Petersen, L. Radtke, M. Abdel-Maksoud, A. Düster. Validation of a partitioned fluid-structure interaction simulation for turbo machine rotors. Ships and Offshore Structures, doi.org/10.1080/17445302.2022.2069389, 2022. 10.1080/17445302.2022.2069389
  3. S. Rezaei, A. Rahimi, J. Parvizian, S. Mansourzadeh, A. Düster. Dimensional optimization of a two-body wave energy converter using response surface methodology. Ocean Engineering, 261:112186, 2022. https://doi.org/10.1016/j.oceaneng.2022.112186
  4. von Bock und Polach, F. et al. Analysis of the scatter in fatigue life testing of thick thermal cut plate edges. Ships Offshore Struct. 0, 1–14 (2022). https://doi.org/10.1080/17445302.2022.2035562

 

M13 Mechanik und Meerestechnik

  1. Performance increase of wave energy harvesting of a guided point absorber, Hollm, Marten; Dostal, Leo; Yurchenko, Daniil; Seifried, Robert, European Physical Journal Special Topics 231 (8) : 1465-1473 (2022), https://doi.org/10.1140/epjs/s11734-022-00497-7
  2. Multivariate simulation of offshore weather time series: a comparison between markov chain, autoregressive, and long short-term memory models, Eberle, Sebastian; Cevasco, Debora; Schwarzkopf, Marie-Antoinette; Hollm, Marten; Seifried, Robert, Wind 2 (2) : 394-414 (2022-06-16), . https://doi.org/10.3390/wind2020021
  3. HippoCampusX-A Hydrobatic Open-source Micro AUV for Confined Environments, Dücker, Daniel-André; Bauschmann, Nathalie; Hansen, Tim; Kreuzer, Edwin; Seifried, Robert, IEEE/OES Autonomous Underwater Vehicles Symposium (AUV 2020), DOI:10.1109/AUV50043.2020.9267949

 

M14 Strukturdynamik

  1. Surface similarity parameter: A new machine learning loss metric for oscillatory spatio-temporal data, Mathies Wedler and Merten Stender and Marco Klein and Svenja Ehlers and Norbert Hoffmann, Neural Networks, 2022, https://doi.org/10.1016/j.neunet.2022.09.023
  2. Lünser, H., Hartmann, M. C. N., Desmars, N., Behrendt, J., Hoffmann, N., & Klein, M. (2022). The influence of characteristic sea state parameters on the accuracy of irregular wave field simulations of different complexity. Multidisciplinary Digital Publishing Institute. https://doi.org/10.15480/882.4508
  3. On the Deterministic Prediction of Water Waves, M. Klein, M. Dudek, G. F. Clauss, S. Ehlers, J. Behrendt, N. Hoffmann, M.Onorato, Fluids 2020, 5, 9, 2020, https://doi.org/10.3390/fluids5010009

 

M27 Produktions- und Fertigungstechnik

  1. Steinmeier et al., 2019: Assessing the need for additive manufacturing methods in the maritime industry in the greater metropolitan region of Hamburg; Download: https://www.mn3d.de/aktuelles/464/2022