MaLiTuP - Machine Learning in Theory und Practice
The project aims at developping and permanently establishing a qualification program called "Machine Learning in Theory und Practice" in order to teach the fundamentals of the field of machine learning to Master's students in logistics at TUHH.
Period | 01.11.2017 - 30.04.2020 |
Project Funding | Funded by the Federal Ministry of Education and Research (BMBF) |
Our Status | Partner |
Contact Person | Marvin Kastner |
Partners | Members |
| |
Partners
|
Description
Especially in the field of logistics, digitization is becoming more and more important, resulting in an ever increasing need for trained personnel in the field of machine learning. In addition to a class, practical projects are to be offered within the qualification program, which enable the students to apply the acquired knowledge in concrete and realistic case studies from the maritime world.
The methodological and content-related focus is on dealing with large amounts of data, their classification and correlation as well as the handling of data uncertainties. Furthermore, a further offer is aimed at university graduates with professional experience in the field of data analysis. In addition, the "MaLiTuP" research project is intended to enable the project partners to expand their own competencies in the field of big data analyses and forecasts.
Publications (excerpt)
- Kastner, Marvin and Franzkeit, Janna and Lainé, Anna (2020). Teaching Machine Learning and Data Literacy to Students of Logistics using Jupyter Notebooks [DELFI Poster Award Winner]. In Zender, Raphael and Ifenthaler, Dirk and Leonhardt, Thiemo and Schumacher, Clara (Eds.) DELFI 2020 Gesellschaft für Informatik e.V.: Bonn 365-366 [Abstract]
[pdf] [www]
- Kastner, Marvin and Hensel, Tina (2020). MaLiTuP: Schlussbericht. [pdf] [doi] [www]
- Kastner, Marvin (2019). Prüfungen mit JupyterHub. TUHH: Blogbeitrag in INSIGHTS - Einblicke in Lehre und Forschung im digitalen Experimentierfeld der TUHH [www]
- Kastner, Marvin and Podleschny, Nicole (2019). Mit Jupyter Notebooks prüfen. Beitrag zur Poster-Session des e-Prüfungs-Symposiums (ePS) in Siegen. [Abstract]
[pdf] [doi] [www]
- Kastner, Marvin and Scheidweiler, Tina (2019). MaLiTuP: Machine Learning in Theory and Practice: Poster. All-Hands-Meeting Machine Learning 2019 [Abstract]
[pdf] [www]
- Kastner, Marvin and Scheidweiler, Tina and Burmeister, Hans-Christoph (2018). MaLiTuP: Machine Learning in Theory and Practice: Poster. Leibniz-Symposium “Maschinelles Lernen – Intelligente Digitalisierung” [Abstract]
[pdf] [www]