Motivation
Continued increase in levels of automation and digitization in all industry sectors constantly improves technological efficiency. Today, waterborne is the largest international transport sector with 90% of transported goods. Globalization and new environmental legislations lead to a rising need for new technological developments for the shipping industry. The global vision of Shipping 4.0 includes integrated smart embedded systems with a high level of autonomy, cloud computing, big data analytics and mobile services. Various initiatives are driving the development of such cyber-physical systems (which already exist in the automotive, aeronautic and manufacturing industry) for the shipping industry to create smart ports/waterways. Another promising technological trend is to offer software, platforms or infrastructure as-a-Service, which allows users to save money, be flexible and always have access to the latest technology. The RoboVaaS Robotic Vessels as-a-Service concept combines these approaches to revolutionize shipping related near-shore operations.
Goals and Contributions
Such a system consists of both surface and underwater vessels to fulfill tasks such as hull inspections, asset monitoring, and data collection. Submerged devices are envisioned to be autonomous with wireless communication and localization facilities in order to report measurements and receive instructions from the management service. Unfortunately, radio communication does not work underwater in general, so that acoustic communication is the method of choice. Here, a particular focus lies on inexpensive devices (both robots and communication) in order to achieve a feasible and affordable system. For this purpose, the smartPORT research group develops light-weight and resilient communication algorithms that will be evaluated through simulation and field-tests with a self-developed, inexpensive, and low-power acoustic underwater modem. Moreover, the modem will be integrated into the HippoCampus AUV (developed at TUHH) in order to run practical experiments and to build a function demonstrator within the RoboVaaS system.
Innovations and Perspectives
The investigated RoboVaaS system is --- due its service-driven aspect and variety of sensors and vehicles --- highly innovative. The development of efficient, light-weight, and resilient algorithms for underwater acoustic communication are a cornerstone of the entire concept and promises real-world research results that will advance the field of inexpensive underwater (swarm) robotics. Due to the involvement of local authorities of the city of Hamburg (Hamburg Port Authority), the system will already fulfill market requirements and will be tested under realistic conditions. Moreover, the involvement of international partners from both industry and academia build a complete consortium to investigate various facets of the system and foster cooperation between the involved parties.