Networked Autonomous Underwater Vehicles
Autonomous underwater vehicles (AUVs) enable automated tasks, such as environmental monitoring (e.g., to assess water quality) and inspections (dams, locks). They can be used to identify pollution and their sources for prosecution, and they may even assist in case of disasters (e.g., ship accidents, floods) in terms of early situation assessment and diver support. Live reporting and the formation of swarms are realized through underwater communication and networking. The former guarantees immediate notification of incidents and findings, subsequently enabling timely responses by the authorities. The latter improves efficiency by increased areas covered and reduced processing times due to joint efforts by several AUVs. At the end of the day, this novel technique reduces the bill as complex, time-consuming, manual work flows are replaced by automated, autonomous devices with low unit and maintenance costs.
Acoustic Modem for Micro AUVs
To enable practical research of communication and self-localization algorithms for swarms of micro AUVs, we built an acoustic underwater modem.
BeoFisch: Autonomous Underwater Vehicle (AUV)-Based Observation of Fish Swarms
In collaboration with Hamburg University of Applied Sciences (HAW) and the University of Hamburg (UHH) we investigate the influence of climate change on the behavior of endangered fish species. For this purpose, a method for non-invasive monitoring of the state of fish stocks with high spatial and temporal resolution is developed based on autonomous underwater vehicles (AUVs). Moreover, the use of AUVs allows monitoring in shallow coastal waters, which is a major limitation of today’s investigation methods carried out with research vessels.
MoSAIk: Mobile Sensor Network for Autonomous and Large-Area Underwater Localization and Identification of Hazards in Ports and Inland Waters
Supported by the German Federal Ministry of Education and Research (BMBF), the MoSAIk project encompasses research towards swarms of miniature, autonomous underwater vehicles to support and protect divers in disaster scenarios and to observe and prevent contamination and pollution of inshore water bodies. Within the project, our research group focuses on reliable underwater communication and self-localization based on a self-mad, inexpensive, low-power communication hardware.