Béla Wiegel

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Béla Wiegel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
Auf Anfrage
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.003
Tel: +49 40 42878 2240
Logo

Forschungsprojekte

EffiziEntEE
Effiziente Einbindung hoher Anteile Erneuerbarer Energien in technisch-wirtschaftlich integrierte Energiesysteme

EffiziEntEE

Effiziente Einbindung hoher Anteile Erneuerbarer Energien in technisch-wirtschaftlich integrierte Energiesysteme

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2022 bis 2025

CyEntEE
I³-Lab Cyber Physical Energy Systems – Sustainability, Resilience and Economics

I³-Lab

CyEntEE

Cyber Physical Energy Systems – Sustainability, Resilience and Economics

Technische Universität Hamburg (TUHH); Laufzeit: 2020 bis 2023

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

2021

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Systemsimulation
Semester:
WiSe 23/24
Course type:
Lecture
Course number:
lv3150_w23
Lecturer:
Johannes Brunnemann, Dr. Andreas Moschallski, Hamed Sadaf Rezapur
Description:

Für die Entwicklung und den Betrieb (dezentraler) Energieversorgungssysteme oder komplexer (verfahrens-)technischer Anlagen ist es wichtig, das Zusammenspiel der physikalischen Einzelkomponenten und -prozesse im Kontext des Gesamtsystems zu verstehen. Immer mehr praktische Fragestellungen, z.B. auf dem Gebiet erneuerbare Energien aber auch der Regelungstechnik, erfordern eine modellbasierte Abbildung der wesentlichen Systemeigenschaften. Dabei spielt die zeitliche Systemdynamik eine wichtige Rolle, eine stationäre Betrachtung allein ist oft nicht ausreichend.

Die Vorlesung Systemsimulation gibt eine Einführung in die gleichungsbasierte, physikalische (System-)Modellierung unter Verwendung der Modellierungssprache Modelica und der kostenfreien Simulationsplattform OpenModelica 1.21.0

Geplante Inhalte sind:

  • Einführung in die physikalische Modellierung auf Systemebene
  • Frage der Modellierung technischer Systeme und deren Grenzen
  • Differenzialgleichungen einfacher Systeme
  • Begriff des Zustandsraumes
  • Praktische Grundlagen in Modelica
  • Einführung in OpenModelica als Simulationswerkzeug
  • Grundprinzipien Bibliothekserstellung
  • Begriffe der objektorientierten Programmierung
  • Frage der Zeitkonstanten, Steifigkeit, Stabilität, Schrittweitenwahl, Solver
  • Beispiele: Hydraulische Systeme, Wärmeleitung und Regelung
  • Systembeispiel

Ziel der Veranstaltung ist es die Teilnehmenden in die Lage zu versetzen Modelica als Werkzeug für eigene Projekte einzusetzen.

Pre-requisites:
Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik, Grundlagen Differenzialgleichungen und lineare Algebra
Performance accreditation:
mündliche Prüfung
Area classification:
Studiendekanat Maschinenbau
ECTS credit points:
4
Stud.IP informationen about this course:
Home institute: Institut für Technische Thermodynamik (M-21)
Registered participants in Stud.IP: 39
Documents: 55

Betreute Abschlussarbeiten

laufende
beendete

2024

  • Rücker, J. (2024). Optimal Scheduling of Flexible Components in Residential Neighborhoods Using Detailed Linear Programming.

2023

  • Nitz, A. (2023). Die Wärmepumpen im virtuellen Kraftwerk - Untersuchung von Wärmepumpen unter Berücksichtigung unterschiedlicher Funktionsprotokolle innerhalb eines virtuellen Kraftwerks.

2022

  • Kaya, E. (2022). Simulation des Lebenszyklus‘ einer Lithium Ion Zelle in den stationären EP and instationären EV Anwendungsfällen.

  • Pauelsen, F.-T. (2022). Implementierung eines Maximum-Power-Point-Tracker für Photovoltaikanlagen in Modelica.

  • Rücker, J. (2022). Dynamische Untersuchung des Verhaltens elektrischer Komponenten auf Quartiersebene hinsichtlich der Spannungshaltung.

  • Rüffert, J. (2022). Charakterisierung von Zellen in Verteilnetzen anhand von Bewertungskriterien und die Auswirkungen von punktuell und zeitlich begrenzt auftretenden Lasten.

2021

  • Helmrich von Elgott, L. (2021). Optimierter Einsatz dezentraler Flexibilität zur Betriebsführung intelligenter sektorgekoppelter Verteilnetze.

  • Zwinzscher, S. (2021). Entwicklung einer Methodik zur dynamischen Berechnung der Flexibilität eines auf Power-to-Heat basierenden Nahwärmenetzes.