Artifact Reduction for MPI

High-quality images are essential for any imaging modality to make a reliable diagnosis, and although MPI is highly sensitive, artifacts are common. This issue poses significant challenges for applications that operate in environments with extremely low levels of iron, such as cell tracking. As a result, our objective is to reduce the amount of image artifacts in MPI by implementing different methods in the reconstruction process that allow for these applications. Key components for artifact reduction are:

Extrapolating the system matrix beyond the drive-field field of view reduces artifacts at the patch boundaries in multi-patch imaging scenarios.

Publications

[146886]
Title: Bias-reduction for sparsity promoting regularization in Magnetic Particle Imaging.
Written by: L. Nawwas, M. Möddel, T. Knopp, and C. Brandt
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009041
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/281
ARXIVID:
PMID:

[www]

Note: inproceedings, artifact

Abstract: Magnetic Particle Imaging (MPI) is a tracer based medical imaging modality with great potential due to its high sensitivity, high spatial and temporal resolution, and ability to quantify the tracer concentration. Image reconstruction in MPI is an ill-posed problem that can be addressed by regularization methods that each lead to a bias. Reconstruction bias in MPI is most apparent in a mismatch between true and reconstructed tracer distribution. This is expressed globally in the spatial support of the distribution and locally in its intensity values. In this work, MPI reconstruction bias and its impact are investigated and a two-step debiasing method with significant bias reduction capabilities is introduced.