Modul M0858: Küstenwasserbau I

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen des Küstenwasserbaus (L0807) Vorlesung 3 4
Grundlagen des Küstenwasserbaus (L1413) Projekt-/problembasierte Lehrveranstaltung 1 2
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen des Wasserbaus, der Hydrologie sowie der Hydromechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden sind in der Lage die wesentlichen Grundlagen des Küstenwasserbaus zu definieren, detailliert zu erläutern und auf einzelne praktische Fragestellungen des Küstenwasserbaus anzuwenden. Sie können die Grundlagen für Planung und Bemessung von küstenwasserbaulichen Anlagen definieren und ermitteln und die gängigen Ansätze für die konstruktive und funktionelle Bemessung im Küstenwasserbau beschreiben. 

Fertigkeiten

Die Studierenden können geeignete Bemessungsansätze für den konstruktiven Entwurf von küstenwasserbaulichen Anlagen auswählen und auf vorgegebene Bemessungsaufgaben anwenden.

Personale Kompetenzen  
Sozialkompetenz

Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung wie der Bemessung von Küstenschutzbauwerken einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten, z.B. bei der Bemessung von Wellenbrechern. 

Selbstständigkeit

Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang Die Prüfungsdauer beträgt 2 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Pflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht
Lehrveranstaltung L0807: Grundlagen des Küstenwasserbaus
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlagen für Planung und Bemessung
    • Wasserstände
    • Strömungen
    • Wellen und Seegang
    • Eis
  • Bemessung im Küstenwasserbau
    • Funktionelle und konstruktive Bemessung
    • Ableitung von Bemessungsparameters
    • Bemessungsansätze
      • Filter
      • Schüttsteinkonstruktionen
      • Pfähle und Pfahlkonstruktionen
      • Senkrechte Bauwerk

 

Literatur

Coastal Engineering Manual, CEM

Vorlesungsumdruck

 

Lehrveranstaltung L1413: Grundlagen des Küstenwasserbaus
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

 

Modul M0859: Küstenwasserbau II

Lehrveranstaltungen
Titel Typ SWS LP
Küsten- und Hochwasserschutz (L0808) Vorlesung 2 3
Küsten- und Hochwasserschutz (L1415) Projekt-/problembasierte Lehrveranstaltung 1 1
Unterhaltung und Verteidigung von Hochwasserschutzanlagen (L1411) Vorlesung 2 2
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Küstenwasserbau I
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden sind in der Lage die wesentlichen Aspekte des Küsten- und Hochwasserschutzes zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Küsten- und Hochwasserschutzes anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente von Küstenschutzanlagen funktionell und konstruktiv entwerfen und bemessen.

 

Fertigkeiten

Die Studierenden können geeignete Bemessungsansätze für den funktionellen und konstruktiven Entwurf von Küsten- und Hochwasserschutzanlagen auswählen und diese auf Bemessungsaufgaben anwenden.

 

Personale Kompetenzen  
Sozialkompetenz

Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung für den funktionellen und kontruktiven Entwurf von Küsten-und Hochwasserschutzanlagen einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten.

Selbstständigkeit Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden.
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang Die Prüfungsdauer beträgt 130 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Vorlesungsinhalte gestellt als auch Berechnungsaufgaben zur Anwendung der vermittelten Vorlesungsinhalte.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht
Lehrveranstaltung L0808: Küsten- und Hochwasserschutz
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum SoSe
Inhalt

Schutz sandiger Küsten

  • Sedimenttransport
  • Morphologie
  • Technische Lösungen zum Schutz sandiger Küsten
    • Längswerke
    • Querwerke
    • Weitere Konzepte
  • 4.5      Berechnungsverfahren / numerische Modelle

Hochwasserschutz

  • Klassifikation der Bauwerke
  • Deiche
  • Dünen
  • Maßnahmen im Vorland
  • Hochwasserschutzmauern
  • Entwässerung des Hinterlands

 

Literatur

Vorlesungsumdruck

Coastal Engineering Manual CEM

 

Lehrveranstaltung L1415: Küsten- und Hochwasserschutz
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1411: Unterhaltung und Verteidigung von Hochwasserschutzanlagen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Olaf Müller
Sprachen DE
Zeitraum SoSe
Inhalt
  • Deichverteidiung
  • Unterhaltung von Hochwasserschutzanlagen

 

Literatur

Vorlesungsumdruck

Modul M0860: Hafenbau und Hafenplanung

Lehrveranstaltungen
Titel Typ SWS LP
Hafenbau (L0809) Vorlesung 2 2
Hafenbau (L1414) Projekt-/problembasierte Lehrveranstaltung 1 2
Hafenplanung und Hafenbau (L0378) Vorlesung 2 2
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

VL Grundlagen des Küstenwasserbaus

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden sind in der Lage die wesentlichen Aspekte der Hafenplanung zu definieren, detailliert zu erläutern und auf praktische Fragestellungen des Hafenbaus anzuwenden. Sie können dem Grunde nach die wesentlichen Elemente eines Hafens entwerfen.

 

 

Fertigkeiten

Die Studierenden können geeignete Bemessungsansätze für den funktionellen Entwurf eines Hafens auswählen und diese auf Bemessungsaufgaben anwenden.

 

 

Personale Kompetenzen  
Sozialkompetenz

Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung für die funktionelle Entwurf eines Hafens einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten.

Selbstständigkeit Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. 
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht
Lehrveranstaltung L0809: Hafenbau
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum SoSe
Inhalt

Grundlagen des Hafenbaus

  • Seeverkehr
  • Schiffe

Elemente von Seehäfen

  • Hafenzufahrt und wasserseitige Hafenflächen (Zufahrten, Einfahrten und Hafenbecken)
  • Terminalgestaltung, Umschlag in Seehäfen
  • Kaimauern und Pieranlagen
  • Ausrüstungen in Häfen
  • Schleusen und Sonderbauwerke

Anbindung von Hinterlandverkehren / Binnenverkehrswasserbau

Schutz von Seehäfen

  • Molen und Wellenbrecher
  • Wellenschutz für Seehäfen

Fischereihäfen und andere kleine Häfen

  • Sportboothäfen

 

 

Literatur Brinkmann, B.: Seehäfen, Springer 2005
Lehrveranstaltung L1414: Hafenbau
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0378: Hafenplanung und Hafenbau
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Frank Feindt
Sprachen DE
Zeitraum SoSe
Inhalt
  • Planung und Durchführung von Großprojekten
  • Marktanalyse und Verkehrsbeziehungen
  • Planung und Planverfahren
  • Hafenplanung in urbaner Nachbarschaft
  • Entwicklung des Logistik-Standorts Hafen Hamburg in der Metropole
  • Kaianlagen und Uferbauwerk
  • Sonderplanungsrecht Hafen - Sicherung einer flexiblen Hafennutzung
  • Bemessung von Kaianlagen
  • Hochwasserschutzbauwerke
  • Hafen Hamburg - Infrastruktur und Entwicklung
  • Herstellung von Flächen
  • Kolkbildung vor Uferbauwerken
Literatur Vorlesungsumdruck, s. www.tu-harburg.de/gbt

Modul M0861: Modellieren im Wasserbau

Lehrveranstaltungen
Titel Typ SWS LP
Hydraulische Modelle (L0813) Projekt-/problembasierte Lehrveranstaltung 1 1
Modellieren von Seegang (L0812) Projekt-/problembasierte Lehrveranstaltung 1 1
Modellieren von Strömungen in Flüssen und Ästuaren (L0810) Vorlesung 3 4
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Küstenwasserbau I
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen und Wellen / Seegang im Wasserbau und Küstenwasserbau verbunden sind, detailliert definieren. Daneben können sie wesentliche Aspekte der Modellierung benennen und die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang beschreiben.

Fertigkeiten

Die Studierenden können numerische Modelle auf einfache Fragestellungen anwenden.

 

Personale Kompetenzen  
Sozialkompetenz Die Studierenden lernen die Fachkenntnisse in einfachen anwendungsorientierten Fragestellung einzusetzen und im Team mit anderen zusammen zu arbeiten.
Selbstständigkeit Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden. 
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang Die Prüfungsdauer beträgt 3 Stunden. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Lehrveranstaltung L0813: Hydraulische Modelle
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Grundlagen hydraulischer Modelle
  • Modellgesetze
  • Pi-Theorem von Buckingham
  • praktische Beispiele bei der Anwendung hydaulischer Modelle
Literatur

Strobl, Zunic: Wasserbau, Kap. 11 Hydraulische Modelle, Springer

 

Lehrveranstaltung L0812: Modellieren von Seegang
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einführung
  • Grundlagen Seegang und Brandung (Wiederholung)
  • Wellentheorien /
    • Lineare und nichtlineare Wellentheorien
    • Flachwassereffekte und Bauwerkseffekte
  • Seegang und Brandung
    • Entstehung und Entwicklung von Seegang
    • Wellenspektren Frequenz- und Zeitbereichsparameter
  • Modellierung von Wellen / phasengemittelte und phasenaufgelöste Modelle
  • Anwendung von phasengemittelten Seegangsmodellen zur Wellenvorhersage (SWAN)
  • Anwendung von phasenaufgelösten Seegangsmodellen (Mike)
Literatur

Vorlesungsumdruck

Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dr. Edgar Nehlsen, Prof. Peter Fröhle
Sprachen EN
Zeitraum SoSe
Inhalt Introduction to numerical flow modelling
  • Processes affecting tht flow
  • Examples and applications of numerical models
  • Procedure of numerical modelling
  • Model concept
Basic equations of hydrodynamics
  • Saint-Venant equations
  • Euler Equations
  • Navier-Stokes equations
  • Reynolds-averaged Navier-Stokes equations
  • Shallow water equations
     
Solving schemes
  • Numerical discretization
  • Solution algorithms
  • Convergence

 

Literatur

Vorlesungsskript

Literaturempfehlungen

 

Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt).

Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series).

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1).

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2).

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3).

Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html.

IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92.

Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology.

Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83).

van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036).

Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127).

Modul M0967: Studienarbeit Hafenbau und Küstenschutz

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Lehrinhalte der Vertiefung Hafenbau und Küstenschutz.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden können ihre Detailkenntnisse im Gebiet des Hafenbaus und Küstenschutzes demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren.

Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich des Hafenbaus und Küstenschutzes eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen.

Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern.
Fertigkeiten

Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren.

Personale Kompetenzen  
Sozialkompetenz

Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben.

Selbstständigkeit

Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen.

Arbeitsaufwand in Stunden Eigenstudium 180, Präsenzstudium 0
Leistungspunkte 6
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang Die Seitenzahl ist abhängig von der Aufgabenstellung.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Pflicht

Modul M1505: Anpassung an den Klimawandel in der wasserbaulichen Praxis (AKWAS)

Lehrveranstaltungen
Titel Typ SWS LP
Anpassung an den Klimawandel in der wasserbaulichen Praxis (L2291) Projekt-/problembasierte Lehrveranstaltung 4 6
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Hydrologie, Wasserbau
  • Hydromechanik, Hydraulik
  • Grundlagen des Küstenwasserbau, Küsten- und Hochwasserschutz
  • Hydrologische Systeme
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen
  • Klimaschutz und Klimaanpassung
  • Erkenntnisse zum Klimawandel und seinen regionalen Ausprägungen - allg. Grundlagen, Klimamodellierung/Klimamodelle
  • Auswirkungen des Klimawandels auf die Komponenten des regionalen Wasserkreislaufes (klimawissenschaftliche Sicht)
  • Grundlagen der praktischen Auswertung von Klimadaten
  • Konsequenzen der Auswirkung des Klimawandels (ingenieurwissenschaftliche Sicht)
  • Maßnahmen zur Anpassung an den Klimawandel
  • Bewertung, Priorisierung und Kommunikation von Anpassungsmaßnahmen
  • Grundlagen der praktischen Auswertung von hydrometeorologischen und hydrologischen Daten
Fertigkeiten
  • kritisches Denken: Analysieren von Prozessen und Zusammenhängen, Einschätzung von Handlungsbedarfen
  • kreatives Denken: Entwicklung von Anpassungsstrategien und Anpassungsmaßnahmen
  • Praktisches Denken: Einbeziehung / Umgang mit Restriktione, Anwendung von Berechnungsansätzen, Methoden, numerischer Modelle, planerische Methoden
  • Bearbeitung komplexer Fragestellungen

 

Personale Kompetenzen  
Sozialkompetenz
  • Zusammenarbeit in heterogenen Gruppen
  • Zusammenarbeit mit anderen wissenschaftl./nicht wissenschaftl. Disziplinen
  • Selbstreflektion, Lernen sich selbst zurückzunehmen => übergeordnete Sichtweisen berücksichtigen
Selbstständigkeit
  • Anwendungsorientiertes Einsetzen von Wissen und Fertigkeiten
  • Selbständige Bearbeitung komplexer Fragestellungen
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Anfertigung einer schriftliche Ausarbeitung zu einer komplexen Fragestellung mit Referat und anschließender Diskussion. Die Bearbeitung der Fragestellung erfolgt parallel zur Lehrveranstaltung.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht
Lehrveranstaltung L2291: Anpassung an den Klimawandel in der wasserbaulichen Praxis
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Prof. Peter Fröhle
Sprachen DE
Zeitraum WiSe
Inhalt
  • Klimaschutz und Klimaanpassung
  • Erkenntnisse zu Klimawandel und seinen regionalen Ausprägungen: Allg. Grundlagen, Klimamodellierung/Klimamodelle
  • Auswirkungen des Klimawandels auf die Komponenten des regionalen Wasserkreislaufs (klimawissenschaftl. Betrachtung)
  • Grundlagen der praktischen Auswertung von Klimadaten
  • Konsequenzen der Auswirkungen des Klimawandels (ingenieurwissenschaftliche Betrachtung)
  • Maßnahmen zur Anpassung an den Klimawandel
  • Bewertung, Priorisierung und Kommunikation von Maßnahmen
  • Grundlagen der praktischen Auswertung von hydrometeorologische und hydrologische Daten
Literatur
  • Bereitgestellte eLearning Plattform

Modul M0871: Hydrologische Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Oberflächenhydrologie (L0289) Vorlesung 2 2
Angewandte Oberflächenhydrologie (L1412) Projekt-/problembasierte Lehrveranstaltung 1 2
Interaktion Umwelt / Wasser in Flußgebieten (L0295) Projekt-/problembasierte Lehrveranstaltung 1 2
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen des Wasserbau und der Hydromechanik; Wasserbau I u. Wasserbau II
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden können die grundlegenden Begriffe der Hydrologie und der Wasserwirtschaft detailliert definieren. Sie sind in der Lage die relevanten Prozesse des Wasserkreislaufes zu beschreiben und zu quantifizieren. Daneben kennen die Studierenden die wesentlichen Aspekte der Niederschlags-Abfluss-Modellierung und können beispielsweise die gängigen Speichermodelle und eine Einheitsganglinie auf theoretischem Wege ableiten.

Fertigkeiten

Die Studierenden sind in der Lage die in der Hydrologie gängigen Ansätze und Methoden anzuwenden und können als Grundlage für Niederschlags-Abflussmodelle exemplarisch die gängigen Speichermodelle oder eine Einheitsganglinie auf theoretischem Wege ableiten. Die Studierenden sind fähig, Grundkonzepte von Messungen hydrologischer und hydrodynamischer Größen in der Natur zu erläutern und entsprechende Messungen durchführen, statistisch auszuwerten und zu bewerten. Sie können ein hydrologisches Modell auf einfache Fragestellungen anwenden.

Personale Kompetenzen  
Sozialkompetenz Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung der Hydrologie und der Wasserwirtschaft einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten. 
Selbstständigkeit Die Studierenden können selbstständig ihr Wissen erweitern und auf neue Fragestellungen anwenden.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang Die Prüfungsdauer beträgt 90 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht
Environmental Engineering: Kernqualifikation: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0289: Angewandte Oberflächenhydrologie
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Peter Fröhle
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Grundlagen der Hydrologie und der Gewässerkunde:

  • Hydrologischer Kreislauf,
  • Datenerhebung in der Gewässerkunde,
  • Datenanalyse und primär-statistische Aufbereitung,
  • Extremwertstatistik,
  • Regionalisierungsverfahren bei der Bestimmung hydrologischer Kenngrößen,
  • Niederschlag-Abfluss-Modellierung auf Basis des UH-Ansatzes
  • Anwendung von N-A Modellen am Beispiel von Kalypso-Hydrologie
Literatur

de.wikipedia.org/wiki/Kalypso_(Software)

kalypso.bjoernsen.de

sourceforge.net/projects/kalypso/
Lehrveranstaltung L1412: Angewandte Oberflächenhydrologie
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0295: Interaktion Umwelt / Wasser in Flußgebieten
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Peter Fröhle
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Es handelt sich hier um eine Veranstaltung, bei der wir die Lehrmethodik des "Problem-Based Learnings" umsetzen. Ein Problem steht im Vordergrund und wird von den Lernenden weitgehend selbständig gelöst. Die Studenten können in der Veranstaltung zwischen verschiedenen Themen wählen, die im Laufe des Semesters vorgestellt und dann ausgearbeitet werden. 

Literatur -

Modul M0870: Management von Oberflächenwasser

Lehrveranstaltungen
Titel Typ SWS LP
Modellieren von Strömungen in Flüssen und Ästuaren (L0810) Vorlesung 3 4
Naturnaher Wasserbau / Integrierter Hochwasserschutz (L0961) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Peter Fröhle
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Hydromechanik und Hydraulik sowie der Hydrologie und des Wasserbaus; Wasserbau I u. Wasserbau II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz  
Wissen

Die Studierenden können die grundlegenden Prozesse, die mit der Modellierung von Strömungen im Wasserbau verbunden sind, detailliert definieren. Daneben können sie die wesentlichen Aspekte der Modellierung, die gängigen numerischen Modelle zur Simulation von Strömungen und Seegang und die Konzepte des naturnahen Wasserbaus sowie des Risikomanagements im Wasserbau beschreiben.

Fertigkeiten

Die Studierenden können hydrodynamisch - numerische Modelle auf praktische Fragestellungen anwenden. Daneben können die Studierenden Hochwasserrisiko-Managementkonzepte für gefährdete Gebiete aufstellen. Sie können Konzepte zur Renaturierung von Gewässern auf praktische Fragestellungen anwenden.

Personale Kompetenzen  
Sozialkompetenz Die Studierenden lernen die Fachkenntnisse in anwendungsorientierten Fragestellung des naturnahen Wasserbaus einzusetzen und im Team mit anderen Fachrichtungen zusammen zu arbeiten.
Selbstständigkeit Die studierenden können selbstständig deren Wissen erweitern und auf neue Fragestellungen anwenden. 
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang Die Prüfungsdauer beträgt 150 min. Es werden sowohl Aufgaben zum allgemeinen Verständis der vermittelten Inhalte gestellt als auch Berechnungsaufgaben, die
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Wasser und Verkehr: Pflicht
Environmental Engineering: Kernqualifikation: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0810: Modelling of Flow in Rivers and Estuaries
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dr. Edgar Nehlsen, Prof. Peter Fröhle
Sprachen EN
Zeitraum SoSe
Inhalt Introduction to numerical flow modelling
  • Processes affecting tht flow
  • Examples and applications of numerical models
  • Procedure of numerical modelling
  • Model concept
Basic equations of hydrodynamics
  • Saint-Venant equations
  • Euler Equations
  • Navier-Stokes equations
  • Reynolds-averaged Navier-Stokes equations
  • Shallow water equations
     
Solving schemes
  • Numerical discretization
  • Solution algorithms
  • Convergence
Literatur

Vorlesungsskript

Literaturempfehlungen:

Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (1997): Hydraulische Berechnung von naturnahen Fließgewässern. Düsseldorf: BWK (BWK-Merkblatt).

Chow, Ven-te (1959): Open-channel Hydraulics. New York usw.: McGraw-Hill (McGraw-Hill Civil Engineering Series).

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019a): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 1: Geodaten in der Fließgewässermodellierung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-1).

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019b): Merkblatt DWA-M 543-2 Geodaten in der Fließgewässermodellierung Teil 2: Bedarfsgerechte Datenerfassung und -aufbereitung. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-2).

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische Modelle, DWA-Arbeitsgruppe WW-3.2 Mehrdimensionale numerische (2019c): Merkblatt DWA-M 543-3 Geodaten in der Fließgewässermodellierung - Teil 3: Aspekte der Strömungsmodellierung und Fallbeispiele. Februar 2019. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-Regelwerk, 543-3).

Hervouet, Jean-Michel (2007): Hydrodynamics of free surface flows. Modelling with the finite element method. Chichester: Wiley. Online verfügbar unter www.loc.gov/catdir/enhancements/fy0741/2007296953-b.html.

IAHR (2015): Professional Specifications for Physical and Numerical Studies in Environmental Hydraulics. In: Hydrolink (3/2015), S. 90-92.

Olsen, Nils Reidar B. (2012): Numerical Modelling and Hydraulics. 3. Aufl. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology.

Szymkiewicz, Romuald (2010): Numerical modeling in open channel hydraulics. Dordrecht: Springer (Water science and technology library, 83).

van Waveren, Harold (1999-): Good modelling practice handbook. [Utrecht], Lelystad, Den Haag: STOWA; Rijkswaterstaat-RIZA; SDU, afd. SEO/RIZA [etc. distr.] (Nota, nr. 99.036).

Zielke, Werner (Hg.) (1999): Numerische Modelle von Flüssen, Seen und Küstengewässern. Deutscher Verband für Wasserwirtschaft und Kulturbau. Bonn: Wirtschafts- und Verl.-Ges. Gas und Wasser (Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau, 127).