Alireza Abbasimoshaei

 

Technische Universität Hamburg

Institut für Mechatronik im Maschinenbau (M-4)

Building Q (Eißendorfer Str. 38)

Room 1.037

Tel.: +49 (0) 40 428-78-3083
al.abbasimoshaei@tuhh.de

 

 

 

Robotics is improving very fast and it is used everywhere. Robotics is a hybrid of mechanics, electrical engineering and computer science. The thing I like in this field is that if you are working hard you can develop a lot of things and you can provide many useful devices for people. To reach this aim, my main focus is on medical robots and devices. But we are working in other areas. Besides, we are working in haptics field because it helps us to provide practical systems like as systems for tele-rehabilitation and tele-medicine. Thus, combining haptics and robotics will make a very fascinating area which helps us to make a lot of profitable devices. I started my work with mechanism design and then I developed my works by building and controlling different robots. This kind of interdisciplinary work help me to have different ideas and make creative things.

CV

Since 10/2019 Research Assistant, Hamburg University of Technology, Institute of Mechatronics in Mechanical Engineering
10/2014 - 06/2019 Ph. D. Student, Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
08/2018 - 03/2019 Researcher at Braunschweig University, Braunschweig, Germany
10/2011 - 08/2014 M. Sc. Student, Mechanical Engineering, Tehran University, Tehran, Iran
08/2008 - 06/2018 R&D Researcher and Designer as project works
08/2010 - 11/2010 Internship at Sarma Sazan Co.
10/2006 - 09/2010 B.Sc. Student, Mechanical Engineering, Mazandaran University, Babol, Iran
10/2002 - 09/2006 Studying at Nodet: National Organization for Development of Exceptional Talents, High School, Amol, Iran

Forschung

  • Robotik
  • Haptik
  • Mechanische Konstruktion
  • Artificial Intelligence
  • Control

 


Books

Haptics: Science, Technology

Applications, and Engineering haptic devices

Dynamics

Machine Dynamics

Vibrations

Patents

Alireza Abbasimoshaei; Thorsten A. Kern; Rehabilitation apparatus for wrist and forearm therapy WO 2022/048906 A1

Alireza Abbasimoshaei; Farshid Najafi; A system creating variable remote center of motion in robotic wrist of sonography robot with international classification of A61B 8/00;A61B 34/30

Some of Publications

[134572]
Title: Analytical Model of each Phalanx Desired Trajectory for Rehabilitation, Treatment, and Enhancement of Peripheral Nerves.
Written by: Abbasi Moshaei, Alireza and M Moghaddam, Majid and Dehghan Neistanak, Vahid
in: <em>Modares Mechanical Engineering</em>. (2019).
Volume: <strong>20</strong>. Number: (1),
on pages: 0--0
Chapter:
Editor:
Publisher: Modares Mechanical Engineering:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type: Journal Paper
DOI:
URL: http://journals.modares.ac.ir/article-15-29886-en.html
ARXIVID:
PMID:

[www]

Note:

Abstract: Modeling the movement of different parts of the body has been studied a lot in recent years. Body movement models such as fingers movements are good guides for designing different robots. Also, motion disability is one of the common diseases that have a great impact on patients' life quality. To treat the rupture of finger tendon, individual rehearsal rehabilitation exercises for each phalanx is required. In order to achieve this aim and take control of each phalanx movement, the mathematical model of the desired trajectory for each joint is necessary. The angle of each joint is measured with the help of a gyro sensor installed on a novel wearable rehabilitation robot proposed in this paper. The mathematical models of the phalanges motions are obtained by curve fitting. The model is applicable not only in the rehabilitation robots but also in the other robotic works. In most of the works in this area, the desired trajectory diagram was drawn and tracking of the trajectory was investigated. Thus, the desired trajectory formula should be fined for the other works. But in this work, the corresponding formula was found and it can help other researchers to easily use of these formulas for their work. To ensure the accuracy and efficiency of the calculated trajectories, the trajectories are implemented in a control system. In order to control this system, a suitable sliding mode controller was designed and the results of system controlling and trajectory tracking using this controller was obtained.


Teaching

  • Basics of Electrical Engineering
  • Applied Design Methodology in Mechatronics
  • Measurement Technology
  • Haptics



Student Works

  • Hajiri, G: Optimization, redesigning, and construction of a wrist rehabilitation robot, 2020.
  • Stein, T: Design a one degree of freedom robot for paralyzed patients by using hydraulic actuator, 2020.
  • Petrovic, M.: Design and simulation of a PID controller for a new wrist rehabilitation robot, 2020.
  • Winkel, M.: Designing, simulation, and implementation of an eye tracking controlling system for a new one degree of freedom robot for paralyzed patients, 2020.
  • Rothe, T: Simulation and comparison of different control types of a hydraulic robot for paralyzed patients, 2020.
  • Siefke, Tim. : Design of a linear aktuator for rehabilitation of joint movement after paralysis, 2021.
  • Schild, L. : Design and implementation of a filter that improves stability within the remote rehabilitation system, 2022.
  • Trieb, Tim: Designing, Building and Testing a foot Prasthesis adaptable for different types of Movement, 2022.
  • Tenbrink, P: Developing a finger rehabilitation robot for whole fingers and its optimization, 2022.
  • Lamprecht, E: Development of a wrist rehabilitation game with haptic feedback, 2022.
  • Shah, Y: Remote Supervising System for a Rehabilitation Device using Cloud Services, 2020.
  • Selim, M: Designing and simulation of a tactile sensor for Surface Scratches Monitoring, 2020.
  • Oelkers, P: Force sensing strategy for wrist rehabilitation robotic system and use in teleoperation, 2020.
  • Knudsen, F: Feasibility of eye-tracking controlled assistance robots, with two or more degrees of freedom, for paralysed persons, 2020.
  • Kumar, A: Intelligent wrist and forearm therapy system with Impedance control and Bio-impedance measurement using Tomography, 2021.
  • Aly Ibrahim, A: Developing a VR training environment for fingers rehabilitation, 2021.
  • Kitajima Borges, J: Impedance Control and Connectivity Solution of a Wrist Telerehabilitation system, 2021.
  • Jebbawy, S: Mobile Application as a Replacement for the Therapist's Wrist Rehabilitation Robot, 2021.
  • Nanjangud, S: Detail Design and Build a tactile sensor for surface scratch monitoring, 2021.
  • Chandra Shekar, T: Developing an intelligent wrist and forearm therapy system with wireless communication and wearable PCB, 2022.
  • Fahad, M: Designing, Simulation and Building of a Whisker Sensor for Surface Scratch Monitoring using Artificial Intelligence, 2022.
  • Laatz, D: Developing a mechanised and reusable product to combine heat and vibration therapy, 2022.
  • Böck, M: Combination of Object-Mounted and Head-Mounted Eye Tracking Approaches for Assistance Robots, 2022.
  • Shayan, H: Design on Prosthesis using Photogrammetry, 2022.
  • Kröpelin, T: Design of a new exoskeleton device for wrist rehabilitation, 2022.
  • Schwartz, C: Designing and Building a Whisker based robot for surface scratch detection, 2022.
  • Smadi, A: Optimization of the melting process of a shaft furnace using K3 methods, 2021.
  • Aly Ibrahim, A: Evaluation of a telerehabilitation system of a wrist rehabilitation robot by using universal robots, 2022.
  • Rottke, V: Implementation of Haptic Feedback and a Remote Evaluation Model for a Wrist Telerehabilitation System, 2022.
  • Chinnakkonda Ravi, A: Visuomotors control of Legged Robots, 2022.
  • Jebbawy, S: Developing a Product for Advanced Service and Maintenance of Train Sanitary Controllers, 2022.
  • Kitajima Borges, J: Design, Control and Manufacturing of a Finger Telerehabilitation Exoskeleton with Smart Materials, 2022.
  • Vignesh, V: Modeling and Validating the Kinematic and Dynamic properties of Shape memory alloy wire actuated Continuum Robots, 2022.
  •  

Awards

•    Winning Social Innovation Award in Hamburg maker challenge competition
•    Winning the top 20 best design Award in Hamburg maker challenge competition
•    Winning the first place in Iranian WRO (World Robotic Olympiad) and getting the quota of Iran for WRO 2018 held in Thailand
•    Winning the second place in Iranian WRO (World Robotic Olympiad) and getting the quota of Iran for WRO 2017 held in Costa Rica
•    Winning the elite award from Iran's National Elites Foundation
•    Winning the elite award from Iran's National Elites Foundation
•    Ranked among top ten in national exam to enter Ph.D. program in the field of mechanical engineering in Iranian universities
•    Achievement the first rank in national exam to enter Ph.D. program in the field of mechanical engineering of Iranian universities among Tehran university students, 2014.
•    Ranked 137th among more than 12,000 participants in the national universities’ entrance exam for M.Sc. degree 
•    Ranked 17nd among more than 6,000 participants in entrance exam of Islamic Azad University of Tehran, for M.Sc. degree, Iran