Simon Stock

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Simon Stock, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
Jederzeit
Harburger Schloßstraße 36,
21079 Hamburg
Gebäude HS36, Raum C3 0.006
Tel: +49 40 42878 2378
Logo

Forschungsprojekte

Einsatz von KI in der Betriebsführung von Verteilnetzen

Einsatz von KI in der Betriebsführung von Verteilnetzen

Technische Universität Hamburg (TUHH); Laufzeit: 2020 bis 2024

VeN²uS
Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

VeN²uS

Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2024

Forschungsschwerpunkt

Optimaler Betrieb und Energiemanagement von elektrischen Verteilnetzen (Smart Grids) mithilfe von künstlicher Intelligenz

Publikationen

TUHH Open Research (TORE)

2023

2022

2021

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Fortgeschrittenenpraktikum Materialwissenschaften (PR)
Untertitel:
Diese Lehrveranstaltung ist Teil des Moduls: Fortgeschrittenenpraktikum Materialwissenschaften
Semester:
SoSe 24
Veranstaltungstyp:
Praktikum (Lehre)
Veranstaltungsnummer:
lv1653_s24
DozentIn:
Prof. Dr. Jörg Weißmüller, Prof. Dr. Bodo Fiedler, Prof. Dr. Gerold Schneider, Patrick Huber
Beschreibung:

Versuch 1: Aktuatoren für moderne Kraftstoffeinspritzsysteme - Synthese undEigenschaften eines bleifreien Modellaktuators

Experimentelle Arbeitspakete: Charakterisierung der Größenverteilung desAusgangspulvers und Verarbeitung zu einem Grünkörper durch kalt-isostatisches Pressen;Charakterisierung der Kristallographie und Phase über Röntgenbeugung.Charakterisierung der Permittivität und der Potenzial-Dehnungs-Isothermen; Messungvon Dichte und Korngröße; Messung der Bruchzähigkeit über Indentationsverfahren.

Versuch 2: Auswirkungen von Schädigungen in Faserverbundwerkstoffen aufderen Restfestigkeit

Experimentelle Arbeitspakete: Herstellung von Probeplatten imPrepreg/Autoklav-Verfahren; Schadenseinbringung mittels Fallgewicht, Analyseder Schlagschäden mittels Ultraschall; Prüfung der Restfestigkeit derProbeplatten im Druckversuch

Versuch 3: Aktuatorik mit nanoporösen Metallen

Experimentelle Arbeitspakete: metallurgische Herstellung derAusgangslegierung durch Erschmelzen im Lichtbogenofen; Umwandlung in einennanoporösen Körper durch elektrochemische Legierungskorrosion; elektrochemischeCharakterisierung, insbesondere hinsichtlich des spezifischen Flächeninhalt undder Strukturgröße; Charakterisierung der elektrochemischen Aktorik durch in-situDilatometrie in elektrochemischer Umgebung unter Ausnutzung der Mechanismen derElektrokapillarität

Versuch 4: Fluidtransport durch nanoporöse Membranen

Experimentelle Arbeitspakete: Anpassung eines Laserinterferometers an denVersuch; Justage des Interferometers; Dokumentation der optischen Signaturwährend des Kapillarsteigens von Wasser in einer Membran aus nanoporösemSilizium

Versuch 5: Mikro- und Nanostrukturanalyse mittels Elektronenmikroskopie

Experimentelle Arbeitspakete: Slice-and-View-Tomographie mittels fokussiertem Ionenstrahl und 3D-Rekonstruktion; Zusammensetzungs- und Phasenanalyse im Rasterelektronenmikroskop; Nanoskalige Gefüge- und Kristallstrukturuntersuchung im Transmissionselektronenmikroskop






Leistungsnachweis:
650 - Fortgeschrittenenpraktikum Materialwissenschaften<ul><li>650 - Fortgeschrittenenpraktikum Materialwissenschaften: schriftliche Ausarbeitung</li></ul>
ECTS-Kreditpunkte:
6
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Werkstoffphysik und Werkstofftechnologie (M-22)
beteiligte Institute: Institut für Keramische Hochleistungswerkstoffe (M-9), Institut für Kunststoffe u. Verbundwerkstoffe (M-11), Institut für Material- und Röntgenphysik (M-2), Betriebseinheit Elektronenmikroskopie (M-26)
In Stud.IP angemeldete Teilnehmer: 33
Anzahl der Dokumente im Stud.IP-Downloadbereich: 7

Betreute Abschlussarbeiten

laufende
beendete

2021

  • Hund, P. (2021). Modellierung eines elektrischen Netzes zur Demonstration des Einflusses von virtueller Trägheit durch umrichterbasierte Energieanlagen.

  • Hund, P. (2021). Koordinierte Bereitstellung von virtueller Trägheit durch erneuerbare umrichterbasierte Energieanlagen in Verteilnetzen mithilfe von künstlicher Intelligenz.

  • Möller, P. (2021). Erfassung der Knotenspannung in Niederspannungsnetzen auf Basis von dezentralen Messeinrichtungen mithilfe von Machine learning.

  • Plant, R. (2021). Estimation of Power System Inertia in an Inverter-Dominated Distribution Grid Using Machine Learning.

2020

  • Dressel, M. (2020). Modellierung der Zustandsschätzung eines elektrischen Netzes mit Hilfe von Graph neuronalen Netzen.

  • Schmidt, M. (2020). Vorhersage von zuverlässig bereitstellbarer Regelleistung aus Erneuerbaren Energien mithilfe von neuronalen Netzen.