Simon Stock

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Simon Stock, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
Jederzeit
Harburger Schloßstraße 36,
21079 Hamburg
Gebäude HS36, Raum C3 0.006
Tel: +49 40 42878 2378
Logo

Forschungsprojekte

Einsatz von KI in der Betriebsführung von Verteilnetzen

Einsatz von KI in der Betriebsführung von Verteilnetzen

Technische Universität Hamburg (TUHH); Laufzeit: 2020 bis 2024

VeN²uS
Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

VeN²uS

Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2024

Forschungsschwerpunkt

Optimaler Betrieb und Energiemanagement von elektrischen Verteilnetzen (Smart Grids) mithilfe von künstlicher Intelligenz

Publikationen

TUHH Open Research (TORE)

2023

2022

2021

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Chemische Reaktionstechnik (Grundlagen) (HÜ)
Untertitel:
Diese Lehrveranstaltung ist Teil des Moduls: Chemische Reaktionstechnik
Semester:
WiSe 23/24
Veranstaltungstyp:
Übung (Lehre)
Veranstaltungsnummer:
lv244_w23
DozentIn:
Prof. Dr. Raimund Horn, Dr. Oliver Korup
Beschreibung:

Grundbegriffe der Reaktionstechnik, Definitionen, Konzentrationsberechnungen (Reaktor, Reaktionsgemisch, Reaktanten, Produkte, Begleitstoffe, Reaktionsvolumen, Reaktorvolumen, Chemische Reaktion, Masse, Stoffmenge, Molenbruch, Volumen, Dichte, molare Konzentration, Massen-Konzentration, Molalität, Partialdruck, Hydrodynamische Verweilzeit, Raumzeit, Reaktionslaufzahl, Durchsatz eines Reaktors, Belastung eines Reaktors, Umsatz, Selektivität, Ausbeute, Konzentrationsberechnungen in ruhenden und strömenden Multikomponenten-Mischungen)

Stöchiometrie und stöchiometrische Berechnungen (Einfache Reaktionen, Komplexe Reaktionen, Schlüsselreaktionen, Schlüsselspezies, Matrix der stöchiometrischen Koeffizienten, linear abhängige und unabhängige Reaktionen, Element-Spezies-Matrix, reduzierte Stufenform einer Matrix, Rang einer Matrix, Gauss Jordan Eliminierung, Zusammenhang Stöchiometrie und Kinetik, Berechnung der Reaktionslaufzahlen bei multiplen Reaktionen aus Stoffmengenänderungen)

Thermodynamik (Was ist Thermodynamik?, Bedeutung der Thermodynamik in der Reaktionstechnik, Nulltet Hauptsatz, Temperaturskalen, Temperaturmessung in der Praxis, 1. Hauptsatz, Innere Energie, Enthalpie, Kalorimeter, Reaktionsenthalpie, Standardbildungsenthalpie, Satz von Hess, Wärmekapazität, Kirchhoff'scher Satz, Standardreaktionsenthalpie, Druckabhängigkeit der Reaktionsenthalpie, 2. Hauptsatz, Reversible und Irreversible Zustandsänderungen, Entropie, Clausius'sche Ungleichung, Freie Energie, Freie Enthalpie, Chemisches Potential, Chemisches Gleichgewicht, Aktivität, Van't Hoff'sche Reaktionsisobare, Gleichgewichtsberechnungen an ausgewählten Beispielen, Prinzip von Le Chatelier und Braun, Gleichgewichtsberechnung bei multiplen Reaktionen, Lagrange'sche Multiplikatoren)

Chemische Kinetik (Reversible und Irreversible Reaktionen, Homogene und Heterogene Reaktionen, Elementarschritt, Reaktionsmechanismus, Mikrokinetik, Makrokinetik, Formalkinetik, Reaktionsgeschwindigkeit, Stoffmengenänderungsgeschwindigkeit, Arrhenius-Gleichung, Aktivierungsenergie und Vorfaktor bei komplexen Reaktionen, Reaktion 0., 1., 2. Ordnung, Integration der Geschwindigkeitsgesetze, Damköhler-Zahl, Differentielle und Integrale Methode der Kinetischen Analyse, Grundtypen von Laborreaktoren zum Messen von Kinetiken, Halbwertszeiten, Kinetik komplexer Reaktionen, Parallelreaktionen, Reversible Reaktionen, Folgereaktionen, Reaktion mit vorgelagertem Gleichgewicht, Reduktion von Reaktionsmechanismen, Quasistationarität nach Bodenstein, Geschwindigkeitsbestimmender Schritt, Michaelis-Menten Kinetik, Analytische Integration von Differentialgleichungen 1. Ordnung - integrierender Faktor, Numerische Integration Komplexer Kinetiken)

Typen Chemischer Reaktionsapparate (Chemische Reaktoren in Industrie und Labor, Ideale vs. Reale Reaktoren, Diskontinuierliche-, Halbkontinuierliche-, Kontinuierliche Reaktoren, Einphasig- Zweiphasig- Mehrphasige Reaktoren, Batch-Reaktor, Semi-Batch Reaktor, CSTR, Plug Flow Reaktor, Festbettreaktoren, Hordenreaktor, Drehrohröfen, Wirbelschichten, Gas-Flüssig-Reaktoren, Dreiphasen-Reaktoren)

Isotherme Idealreaktoren (Molbilanz eines chemische Reaktors, Molbilanz des Batch-Reaktors, Integration der Molbilanz des Batch-Reaktors für verschiedene Kinetiken, Partialbruchzerlegung, Molbilanz des Semibatch-Reaktors, Molbilanz des Plug Flow Reaktors, Analogie Batch Reaktor - PFR, Auslegung von PFR's bei Reaktionen mit Volumenänderung, komplexen Reaktionen, Molbilanz eines katalytischen Festbett-Reaktors, Auslegung eines Membranreaktors, Molbilanz des CSTR, Vergleich von CSTR und PFR hinsichtlich Umsatz und Selektivität, Molbilanz der Rührkesselkaskade, Numerisch-Iterative Berechnung von Rührkesselkaskaden, Newton-Raphson Verfahren, Graphische Auslegung von Rührkesselkaskaden)

Nichtisotherme Idealreaktoren (Energiebilanz chemischer Reaktoren, adiabate Reaktoren, adiabatische Temperaturerhöhung, Hordenreaktor für adiabate exotherme Gleichgewichtsreaktionen, Auslegung eines adiabaten Strömungsrohres, Levenspiel-Plots, Wärmedurchgang durch eine Reaktorwand, Wärmeübergang, Wärmeleitung, Wärmedurchgang durch eine gekrümmte Wand, Auslegung eines PFR im Gleichstrom und Gegenstrom, Wärmebilanz des Kühlmediums, CSTR mit Wärmeaustausch, Multiple Stationäre Zustände, Zünd-Lösch Verhalten, Stabilität eines CSTR, Komplexe Reaktionen in nicht-isothermen Reaktoren, optimales Temperaturprofil eines Reaktors)

Leistungsnachweis:
320 - Chemische Reaktionstechnik<ul><li>320 - Chemische Reaktionstechnik: Klausur schriftlich</li><li>820 - Verpflichtende Studienleistung Praktikum Chemische Reaktionstechnik (Grundlagen): Fachtheoretisch-fachpraktische Studienleistung</li></ul>
ECTS-Kreditpunkte:
2
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Chemische Reaktionstechnik (V-2)
In Stud.IP angemeldete Teilnehmer: 98
Anzahl der Dokumente im Stud.IP-Downloadbereich: 31

Betreute Abschlussarbeiten

laufende
beendete

2021

  • Hund, P. (2021). Modellierung eines elektrischen Netzes zur Demonstration des Einflusses von virtueller Trägheit durch umrichterbasierte Energieanlagen.

  • Hund, P. (2021). Koordinierte Bereitstellung von virtueller Trägheit durch erneuerbare umrichterbasierte Energieanlagen in Verteilnetzen mithilfe von künstlicher Intelligenz.

  • Möller, P. (2021). Erfassung der Knotenspannung in Niederspannungsnetzen auf Basis von dezentralen Messeinrichtungen mithilfe von Machine learning.

  • Plant, R. (2021). Estimation of Power System Inertia in an Inverter-Dominated Distribution Grid Using Machine Learning.

2020

  • Dressel, M. (2020). Modellierung der Zustandsschätzung eines elektrischen Netzes mit Hilfe von Graph neuronalen Netzen.

  • Schmidt, M. (2020). Vorhersage von zuverlässig bereitstellbarer Regelleistung aus Erneuerbaren Energien mithilfe von neuronalen Netzen.