Tom Steffen

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Tom Steffen, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
Nach Vereinbarung
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.015
Tel: +49 40 42878 2734
Logo

Forschungsprojekte

EffiziEntEE
Effiziente Einbindung hoher Anteile Erneuerbarer Energien in technisch-wirtschaftlich integrierte Energiesysteme

EffiziEntEE

Effiziente Einbindung hoher Anteile Erneuerbarer Energien in technisch-wirtschaftlich integrierte Energiesysteme

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2022 bis 2025

CyEntEE
I³-Lab Cyber Physical Energy Systems – Sustainability, Resilience and Economics

I³-Lab

CyEntEE

Cyber Physical Energy Systems – Sustainability, Resilience and Economics

Technische Universität Hamburg (TUHH); Laufzeit: 2020 bis 2023

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

2021

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Technik und Strömungsmechanik von Segelschiffen (VL)
Subtitle:
Diese Lehrveranstaltung ist Teil des Moduls: Ausgewählte Themen der Schiffs- und Meerestechnik, Ausgewählte Themen der Schiffs- und Meerestechnik (12LP), Ausgewählte Themen der Schiffs- und Meerestechnik (6LP)
Semester:
WiSe 23/24
Course type:
Lecture
Course number:
lv873_w23
Lecturer:
Prof. Dr. Thomas Rung, Dr.-Ing. Peter Marvin Müller
Description:

Grundlagen der Segelmechanik:

- Segeln: Vortrieb aus Relativbewegung

- Quertriebsflächen: Segel, Flügel, Ruder, Flossen, Kiele

- Windklima: global, saisonal, meteorologisch, lokal

- Aerodynamik von Segeln und Segelriggs

- Hydrodynamik von Rumpf und Flossen

Elemente der Segelschiffs-Technik:

- Traditionelle und Moderne Segelformen

- Moderne und Unkonventionelle Windvortriebs-Organe

- Rumpfformen und Kiel-Ruder-Konfigurationen

- Segel-Fahrtleistungs-Abschätzungen

- Wind-Hilfsvortrieb: Motorsegeln

Konfiguration von Segelschiffen:

- Abstimmung von Rumpf und Segelrigg

- Segel-Boote und -Yachten

- Traditionelle Großsegler

- Moderne Großsegler

Performance accreditation:
690 - Ausgewählte Themen der Schiffs- und Meerestechnik (6LP)<ul><li>305 - Schiffsdynamik: Klausur schriftlich</li><li>615 - Schiffsakustik: mündlich</li><li>635 - Ausrüstung und Betrieb von Offshore-Spezialschiffen: mündlich</li><li>680 - Offshore-Windkraftparks: mündlich</li><li>695 - Technik und Strömungsmechanik von Segelschiffen: mündlich</li><li>700 - Technik von Überwassermarinefahrzeugen: mündlich</li><li>800 - Entwerfen von Unterwasserfahrzeugen: mündlich</li><li>800 - Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik: mündlich</li><li>810 - Lattice-Boltzmann-Methoden für die Simulation von Strömungen mit freien Oberflächen: mündlich</li><li>810 - Modellierung und Simulation maritimer Systeme: mündlich</li><li>p1339 - Schiffsdynamik: Klausur schriftlich</li></ul><br>691 - Ausgewählte Themen der Schiffs- und Meerestechnik (12LP)<ul><li>305 - Schiffsdynamik: Klausur schriftlich</li><li>615 - Schiffsakustik: mündlich</li><li>635 - Ausrüstung und Betrieb von Offshore-Spezialschiffen: mündlich</li><li>680 - Offshore-Windkraftparks: mündlich</li><li>695 - Technik und Strömungsmechanik von Segelschiffen: mündlich</li><li>700 - Technik von Überwassermarinefahrzeugen: mündlich</li><li>800 - Entwerfen von Unterwasserfahrzeugen: mündlich</li><li>800 - Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik: mündlich</li><li>810 - Lattice-Boltzmann-Methoden für die Simulation von Strömungen mit freien Oberflächen: mündlich</li><li>810 - Modellierung und Simulation maritimer Systeme: mündlich</li><li>p1339 - Schiffsdynamik: Klausur schriftlich</li></ul><br>lv873 - Technik und Strömungsmechanik von Segelschiffen (Vorlesung)<ul><li>695 - Technik und Strömungsmechanik von Segelschiffen: mündlich</li></ul>
ECTS credit points:
3
Stud.IP informationen about this course:
Home institute: Institut für Fluiddynamik u. Schiffstheorie (M-8)
Registered participants in Stud.IP: 8
Documents: 29

Betreute Abschlussarbeiten

laufende

2024

  • Beskronych, Sergej (2024). Entwicklung und Simulation einer Methode zur effizienten kurativen Netzengpassbehebung mittels Steuerbarer Verbrauchseinheiten nach EnWG §14a.

  • Gerstein, Manuel (2024). Analyse und Bewertung der Netzkapazität von Niederspannungsnetzen gegenüber hohen Durchdringungen an elektrischen Wärmepumpen und Elektroautos (extern).

  • Malpricht, Marlin (2024). Entwicklung und Simulation eines kurativen Engpassmanagements für zellulare Verteilnetze und Bewertung potentieller Vorteile bei Kooperation von Übertragungs- und Verteilnetzbetreibern.

  • Mülke, Luca (2024). Online-Optimierung von kurativem Netzengpassmanagement in sektorgekoppelten Nie-derspannungsnetzen unter Einbezug von kurzfristigen Netzzustandsprognosen.

beendete

2024

  • Ahrens, Daniel (2024). Entwicklung und Bewertung von Sensitivitätsanalysen innerhalb zellularer Niederspannungsnetze für ein zukünftiges Engpassmanagement nach EnWG §14a.

2023

  • Buse, Alexander (2023). Entwicklung und Simulation eines kurativen Engpassmanagements für Niederspannungszellen innerhalb eines zellularen Energiesystems.

  • Merling, Stefan (2023). Analyse und Bewertung von Energieangeboten in zellular betriebenen Niederspannungsnetzen mit lokalem Markt.

  • Mülke, Luca (2023). Verbesserung von verteilten Kurzfrist-Netzzustandsprognosen mit maschinellem Lernen für kuratives Engpassmanagement in zukünftigen modernen sektorgekoppelten Niederspannungsnetzen.

2022

  • Fahrenkrug, Finn (2022). Entwicklung und Verifikation eines thermisch-elektrischen Leitungsmodells für das Engpassmanagement im elektrischen Verteilnetz.

  • Hoegel, N. (2022). Untersuchung und Bewertung von Netzzustandschätzung und -Prognosen unter Berücksichtigung von Fehlerszenarien bezüglich der Informations- und Kommunikationstechnik.

  • Hoegel, N. (2022). Entwicklung und Simulation eines verteilten Netzzustandsprognoseverfahrens für zellulare elektrische Energiesysteme. [pdf]

  • Rogoll, H. (2022). Entwicklung und Simulation von sozialen Beziehungen benachbarter Zellen zur Eigenverbrauchsoptimierung innerhalb eines zellularen Energiesystems mittels eines Multiagentensystem. [pdf]

  • Westphal, J. (2022). Implementierung und Bewertung einer Co-Simulation mit der Plattform Mosaik zur Kopp-lung von Modelica mit einem in Python implementierten Optimierungsalgorithmus.

2021

  • Luo, K. (2021). Entwicklung und Simulation eines Wechselrichtermodells für die Stabilitätsuntersuchung im winkelgeregelten Betrieb zukünftiger Stromnetze.

  • Schenk, C. (2021). Entwicklung und Optimierung der Beschaffungsstrategie für abzuregelnde Energie im Redispatch 2.0-Kontext basierend auf einer Vorhersagbarkeitsanalyse von Netzengpässen.