Christoph Klie

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Christoph Klie, M.Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
Jederzeit
Harburger Schloßstraße 36,
21079 Hamburg
Gebäude HS36, Raum C3 0.001
Tel: +49 40 42878 2239
E-Mail:
Logo

Forschungsprojekt

SuSy
Sustainable DC-Systems - Gleichstrom-Energieversorgung auf Schiffen

SuSy

Sustainable DC-Systems - Gleichstrom-Energieversorgung auf Schiffen

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2024

Publikationen

TUHH Open Research (TORE)

2023

2022

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Measurement Technology Lab for Mechanical Engineering
Semester:
SoSe 24
Course type:
Practical Course
Course number:
lvL1118_s24
Lecturer:
M. Sc. Mechatronics Finn Jannek Klar, Prof. Dr. Thorsten Kern
Description:
The module "Measurement Technology for Mechanical Engineering" is to be passed by all students with a project-based-learning exam by doing two practical courses (MSR & MT). Both of them need to be passed separately. The MT Lab involves ten experiments, each of which must be passed. The MT & MSR labs may be done in different semesters. To pass each experiment, you need to do five steps (details listed below) - You prepare yourself, reading the material for the experiment and attending the lecture - You execute an ILIAS-test (link in Stud.ip) to get approval for the live experiment - You book a seat in the lab for a time slot, which suits you, go there and receive the material - You execute the experiment in the lab, usually it takes around 1.5 hours for each experiment including recording of all data - You carry your data home and do some small post-processing-tasks on the data, submitting the results via Stud.ip vips We recommend doing one experiment every week. But you are free to arrange timing and sequence yourself. The ten experiments are: 1. mechanical measurements 2. motor power 3. resistive I: potentiometers 4. resistive II: strain-gauge & Wheatstone-bridge 5. capacitive I: general 6. capacitive II: acceleration 7. optical I: light reflection switch 8. optical II: diodes/phototransistors/photoresistors 9. magnetic: hall-sensor 10. piezo-electric Further information and the lab exercises can be found here: https://imek.atlassian.net/wiki/spaces/MLP/pages/12419749/Measurement+Technology+Lab+MT+Lab+new
Miscellaneous:
The module "Measurement Technology for Mechanical Engineering" is to be passed by all students with a project-based-learning exam by doing two practical courses (MSR & MT). Both of them need to be passed separately.

The MT Lab involves ten experiments, each of which must be passed. The MT & MSR labs may be done in different semesters. To pass each experiment, you need to do five steps (details listed below)

- You prepare yourself, reading the material for the experiment and attending the lecture
- You execute an ILIAS-test (link in Stud.ip) to get approval for the live experiment
- You book a seat in the lab for a time slot, which suits you, go there and receive the material
- You execute the experiment in the lab, usually it takes around 1.5 hours for each experiment including recording of all data
- You carry your data home and do some small post-processing-tasks on the data, submitting the results via Stud.ip vips

We recommend doing one experiment every week. But you are free to arrange timing and sequence yourself.

The ten experiments are:
1. mechanical measurements
2. motor power
3. resistive I: potentiometers
4. resistive II: strain-gauge & Wheatstone-bridge
5. capacitive I: general
6. capacitive II: acceleration
7. optical I: light reflection switch
8. optical II: diodes/phototransistors/photoresistors
9. magnetic: hall-sensor
10. piezo-electric

Further information and the lab exercises can be found here:
https://imek.atlassian.net/wiki/spaces/MLP/pages/12419749/Measurement+Technology+Lab+MT+Lab+new
Stud.IP informationen about this course:
Home institute: Institut für Mechatronik im Maschinenbau (M-4)
Registered participants in Stud.IP: 37
Documents: 2

Betreute Abschlussarbeiten

laufende

2023

  • Erxleben, J. (2023). Entwicklung eines Algorithmus zur Identifikation und Klassifizierung relevanter Arbeitspunkte eines elektrischen Systems aus Momentanwert-Datensätzen.

beendete

2023

  • Engemann, T. (2023). Entwicklung einer Methodik zur automatischen Identifizierung, Klassifizierung und Modellierung betriebsrelevanter Arbeitspunkte eines elektrischen Netzes aus Echtzeitmesswerten.

  • Herzberg, M. (2023). Entwicklung eines echtzeitfähigen Photovoltaiksimulators auf Basis historischer Strahlungsdaten für einen Power Hardware-in-the-Loop Aufbau mit einem PV-Wechselrichter.

  • Heunda, J.E.W. (2023). Entwicklung, Optimierung und Vergleich von Methoden zur Erzeugung passiver Ersatzschaltbilder aus Messwerten einer Impedanzspektroskopie.

2022

  • Becker, H. C. (2022). Entwicklung, Implementierung und Verifizierung einer Schnittstellensynchronisation für die Kopplung von in Echtzeit simulierten Anlagen und Komponenten an einen PHiL Laboraufbau.

  • Hinzke, M. (2022). Untersuchung der Stabilität eines Power Hardware-in-the-Loop Teststandes unter der Verwendung eines Synchrongenerators als Schnittstelle zwischen Simulation und Hardware.

  • Landenfeld, Jakob (2022). Implementierung und Validierung einer Methode zur Stabilisierung von Power Hardware-in-the-Loop Simulationen mittels einer online-Impedanzmessung auf einem FPGA.

  • Landenfeld, Jakob (2022). Bestimmung der Stabilitätskriterien eines DC Power Hardware-in-the-Loop Aufbaus zur Untersuchung von Rippelstrom in Gleichstromsystemen.

  • Müller, E. (2022). Evaluation of different modelling approaches for battery aging to predict capacity fade for optimization of battery operation.

  • von Krosigk, J. (2022). Analyse und Bewertung einer Einsatzoptimierung für erneuerbare Energieanlagen in Kombination mit Batteriespeichersystemen im Multi-Use Betrieb.

2021

  • Erxleben, J. (2021). Untersuchung der Performance eines Pools aus Erneuerbaren Energien für die Erbringung von frequenzstützenden Maßnahmen.

  • von Krosigk, J. (2021). Untersuchung eines neuartigen Ansatzes zur kurz- und mittelfristigen Vorhersage der Netzfrequenz unter der Verwendung künstlicher neuronaler Netze.