Dr.-Ing. Jan-Peter Heckel

Wissenschaftlicher Mitarbeiter

Kontakt

Dr.-Ing. Jan-Peter Heckel
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung (Terminabsprache per E-Mail)
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.014
Tel: +49 40 42878 2381
Logo

Forschungsprojekte

VeN²uS
Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

VeN²uS

Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2024

ResiliEntEE
Resilienz gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien

ResiliEntEE

Resilienz gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien

Technische Universität Hamburg (TUHH); Laufzeit: 2017 bis 2021

Publikationen

TUHH Open Research (TORE)

2023

2022

2021

2020

2019

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Organische Funktionsmaterialien für die Elektronikindustrie (GÜ) / Organic and polymeric materials for the electronics industry (excercise / meeting)
Subtitle:
This course is part of the module: Organic and polymeric materials for the electronics industry
Semester:
SoSe 24
Course type:
Exercise
Course number:
lv3199_s24
Lecturer:
Prof. Dr. Franziska Lissel
Description:
Deutsch: In diesem Modul sollen die Studierenden mit den im Bereich der organischen Elektronik verwendeten Bauteile (z.B. organische Feldeffektransistoren OFETs) und deren Materialien (z.B. polymere Halbleiter) vertraut gemacht werden. Ausgewählte Materialklassen werden vorgestellt (u.a. konjugierte Oligomere und Polymere) und ihre Synthese, Eigenschaften und Anwendungen (z.B. Transistoren zur Detektion kleiner Moleküle) diskutiert. Die Veranstaltung gewährt einen Einblick in das Design funktionaler organischer und polymerer Materialien für elektronische Anwendung, in die Herstellung von Systemen mit maßgeschneiderten Eigenschaften (z.B. dehnbare Halbleiter) und deren Verarbeitung zu funktionierenden Bauteilklassen. Besonderer Fokus liegt der Zusammenhang zwischen der molekularen Struktur von Verbindungen und ihren Eigenschaften auf molekularer Ebene sowie als Funktionsmaterial im System der Anwendung. English: In this module, students will be familiarized with the components used in the field of organic electronics (e.g. organic field-effect transistors OFETs) and their materials (e.g. polymer semiconductors). Selected classes of materials will be introduced (e.g. conjugated oligomers and polymers) and their synthesis, properties and applications (e.g. transistors for the detection of small molecules) will be discussed. The course provides an insight into the design of functional organic and polymeric materials for electronic applications, the production of systems with customized properties (e.g. stretchable semiconductors) and their processing into functional devices. Special focus is placed on the relationship between the molecular structure of compounds and their properties at the molecular level and as functional materials in the application system.
Performance accreditation:
Organic and polymeric materials for the electronics industry - Organic and polymeric materials for the electronics industry<ul><li>p1960-2023 - Organische und polymere Funktionsmaterialien für die Elektronikindustrie: Presentation</li></ul>
ECTS credit points:
2
Stud.IP informationen about this course:
Home institute: Institut für Angewandte Polymerphysik (M-EXK6)
Registered participants in Stud.IP: 1

Betreute Abschlussarbeiten

laufende

2024

  • Kumar, Melvin (2024). Automatische Erstellung von Simulationsmodellen für die Untersuchung der Auswirkung einer Netzaggregation auf die Kurschlusseigenschaften eines Netzes.

beendete

2024

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

2023

  • Engemann, T. (2023). Nachbildung des Betriebsverhaltens einer Windkraftanlage in einer Laborumgebung.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Heunda, J. (2023). Dynamische Lastmodellierung zur adaptiven Schutzparametrierung in elektrischen Verteilnetzen.

  • Hube, P. (2023). Quantitative Bewertung des Mehrwerts einer adaptiven gegenüber einer konventionellen Netzschutzparametrierung.

  • Hube, P. (2023). Modellierung und Analyse des Kurzschlussverhaltens von Typ 4 umrichtergekoppelten Windkraftanlagen.

  • Kock am Brink, J. (2023). Vergleich von Spannungsstabilitätskennzahlen und deren Eignung als Resilienzindex.

  • Stoffregen, J. F. (2023). Implementierung und Simulation eines Testnetzes für die Mehrwertbetrachtung eines adaptiven Netzschutzes.

2022

  • Hillebrecht, T. (2022). Entwicklung und Implementierung eines Verfahrens zur Online-Detektion von Spannungsin-stabilitäten in gekoppelten Energiesystemen.

  • Schill, G. (2022). Untersuchung von Störungskaskaden in sektorengekoppelten Energiesystemen mittels einer Resilienzkennzahl.

2021

  • Ducci, D. (2021). Untersuchung der Bereitstellung von Regelleistung durch virtuelle Kraftwerke in sektorengekoppelten Energiesystemen.

  • Gomez Anccas, E. D. (2021). Entwicklung einer Methodik zur quantitativen Untersuchung und Bewertung dynamischer Interaktionen in gekoppelten Energiesystemen.

2020

  • Dressel, M. (2020). Untersuchung von spannungsstabilitätsbedingten Resilienzveränderungen im norddeutschen Energiesystem.

  • Gomez Anccas, E. D. (2020). Entwicklung eines Testmodells zur Untersuchung dynamischer Interaktionen in gekoppelten Energiesystemen.

  • Luo, K. (2020). Untersuchung der Auswirkungen des Netzentwicklungsplans 2025 auf die Netztopologie in Norddeutschland.

2019

  • Bredenberg, H. (2019). Optimierungssystem zur Netzplanung für die Mittelspannungsebene unter Berücksichtigung möglicher Entwicklungsszenarien.

  • Faili, Z. (2019). Analysis of the Voltage Stability in the Northern German Electrical Grid with Dynamic Simulation.

  • Häbel, I. (2019). Aggregation von Netzdaten für die numerisch effiziente Simulation gekoppelter Energiesysteme.

  • Krupp, M. (2019). Entwicklung und Integration eines Simulationsmodells für vermaschte Mehrpunkt-HGÜ-Systeme im Rahmen der Power System Toolbox.

2018

  • Dressel, M. (2018). Entwicklung und Integration eines Testnetzes zur Nachbildung des elektrischen Energiesystems von Nordeutschland für die Simuation energietechnischer Szenarien.