Dr.-Ing. Jan-Peter Heckel

Wissenschaftlicher Mitarbeiter

Kontakt

Dr.-Ing. Jan-Peter Heckel
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung (Terminabsprache per E-Mail)
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude Harburger Schloßstraße 22a, Raum 2.014
Tel: +49 40 42878 2381
Logo

Forschungsprojekte

VeN²uS
Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

VeN²uS

Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2024

ResiliEntEE
Resilienz gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien

ResiliEntEE

Resilienz gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien

Technische Universität Hamburg (TUHH); Laufzeit: 2017 bis 2021

Publikationen

TUHH Open Research (TORE)

2023

2022

2021

2020

2019

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik (PR)
Subtitle:
Diese Lehrveranstaltung ist Teil des Moduls: Messtechnik für Maschinenbau, Messtechnik für Maschinenbau- und Verfahrensingenieure
Semester:
SoSe 24
Course type:
Practical Course
Course number:
lv1119_s24
Lecturer:
Prof. Dr. Thorsten Kern
Description:

Der Inhalt vonVersuch 1:

Genauigkeitsuntersuchung einesDelta-Roboters: Im Laufe des Versuchs wird die Genauigkeit eines Delta-Robotersdurch 3 Übungen überprüft. Die erste Aufgabe konzentriert sich auf dieOnline-/Offline-Programmierung des Roboters. Die zweite Aufgabe behandelt dieSensorkalibrierung. In der dritten Aufgabe wird der Radius einer Kugel mit dreiverschiedenen Messmethoden (manuelle Messung, manuelle Messung mit einemSensor, automatische Datenerfassung und Datenverarbeitung) ermittelt.

Der Inhalt vonVersuch 3:

Ziel der Aufgabe ist es dieParallelkinematik zu befähigen Objekte zu finden, zu greifen und auf einerstatischen Zielposition abzulegen. Hierzu ist der Endeffektor der Kinematik miteinem optischen Sensor (Kamera) ausgestattet, dessen Eigenschaften erarbeitetwerden sollen. Es soll der Messbereich des Sensors identifiziert und daraufaufbauend eine Abfahrstrategie zum Finden der Objekte entwickelt sowieimplementiert werden. Sind die Objekte gefunden, sollen sie mit einemMagnetgreifer gegriffen und zum Zielort transportiert werden.

Der Inhalt vonVersuch 4:

Ziel der Aufgabe ist es dieParallelkinematik zu befähigen Objekte zu finden, zu greifen und auf einerbewegten Plattform abzulegen. Hierzu ist der Endeffektor der Kinematik miteinem optischen Sensor (Kamera) ausgestattet, dessen Eigenschaften im VersuchV3 erarbeitet wurden. Darauf aufbauend soll die Kinematik nun befähigt werdender bewegten Plattform zu folgen. Hierzu ist eine Positionsregelung zuerarbeiten und zu implementieren. Ist die Regelung auf geeignete Weiseeingestellt, sollen Objekte auf der bewegten Plattform abgelegt werden.


Versuch 4: Identifikation der Parameter einer Regelstrecke und optimale Einstellung eines Reglers

Performance accreditation:
311 - Messtechnik für Maschinenbau- und Verfahrensingenieure<ul><li>311 - Messtechnik für Maschinenbau- und Verfahrensingenieure: Klausur schriftlich</li><li>811 - Verpflichtende Studienleistung Laborpraktikum: Mess-, Steuer- und Regelungstechnik: Fachtheoretisch-fachpraktische Studienleistung</li></ul><br>m956 - Messtechnik für Maschinenbau<ul><li>811 - Verpflichtende Studienleistung Laborpraktikum: Mess-, Steuer- und Regelungstechnik: Fachtheoretisch-fachpraktische Studienleistung</li><li>p425 - Messtechnik für Maschinenbau: Fachtheoretisch-fachpraktische Arbeit</li></ul><br>m956-2021 - Messtechnik für Maschinenbau<ul><li>811 - Verpflichtende Studienleistung Laborpraktikum: Mess-, Steuer- und Regelungstechnik: Fachtheoretisch-fachpraktische Studienleistung</li><li>p425-2021 - Messtechnik für Maschinenbau: Fachtheoretisch-fachpraktische Arbeit</li></ul>
ECTS credit points:
2
Stud.IP informationen about this course:
Home institute: Studiendekanat Maschinenbau (M)
Registered participants in Stud.IP: 1

Betreute Abschlussarbeiten

laufende

2024

  • Kumar, Melvin (2024). Automatische Erstellung von Simulationsmodellen für die Untersuchung der Auswirkung einer Netzaggregation auf die Kurschlusseigenschaften eines Netzes.

beendete

2024

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

2023

  • Engemann, T. (2023). Nachbildung des Betriebsverhaltens einer Windkraftanlage in einer Laborumgebung.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Heunda, J. (2023). Dynamische Lastmodellierung zur adaptiven Schutzparametrierung in elektrischen Verteilnetzen.

  • Hube, P. (2023). Quantitative Bewertung des Mehrwerts einer adaptiven gegenüber einer konventionellen Netzschutzparametrierung.

  • Hube, P. (2023). Modellierung und Analyse des Kurzschlussverhaltens von Typ 4 umrichtergekoppelten Windkraftanlagen.

  • Kock am Brink, J. (2023). Vergleich von Spannungsstabilitätskennzahlen und deren Eignung als Resilienzindex.

  • Stoffregen, J. F. (2023). Implementierung und Simulation eines Testnetzes für die Mehrwertbetrachtung eines adaptiven Netzschutzes.

2022

  • Hillebrecht, T. (2022). Entwicklung und Implementierung eines Verfahrens zur Online-Detektion von Spannungsin-stabilitäten in gekoppelten Energiesystemen.

  • Schill, G. (2022). Untersuchung von Störungskaskaden in sektorengekoppelten Energiesystemen mittels einer Resilienzkennzahl.

2021

  • Ducci, D. (2021). Untersuchung der Bereitstellung von Regelleistung durch virtuelle Kraftwerke in sektorengekoppelten Energiesystemen.

  • Gomez Anccas, E. D. (2021). Entwicklung einer Methodik zur quantitativen Untersuchung und Bewertung dynamischer Interaktionen in gekoppelten Energiesystemen.

2020

  • Dressel, M. (2020). Untersuchung von spannungsstabilitätsbedingten Resilienzveränderungen im norddeutschen Energiesystem.

  • Gomez Anccas, E. D. (2020). Entwicklung eines Testmodells zur Untersuchung dynamischer Interaktionen in gekoppelten Energiesystemen.

  • Luo, K. (2020). Untersuchung der Auswirkungen des Netzentwicklungsplans 2025 auf die Netztopologie in Norddeutschland.

2019

  • Bredenberg, H. (2019). Optimierungssystem zur Netzplanung für die Mittelspannungsebene unter Berücksichtigung möglicher Entwicklungsszenarien.

  • Faili, Z. (2019). Analysis of the Voltage Stability in the Northern German Electrical Grid with Dynamic Simulation.

  • Häbel, I. (2019). Aggregation von Netzdaten für die numerisch effiziente Simulation gekoppelter Energiesysteme.

  • Krupp, M. (2019). Entwicklung und Integration eines Simulationsmodells für vermaschte Mehrpunkt-HGÜ-Systeme im Rahmen der Power System Toolbox.

2018

  • Dressel, M. (2018). Entwicklung und Integration eines Testnetzes zur Nachbildung des elektrischen Energiesystems von Nordeutschland für die Simuation energietechnischer Szenarien.