Dr.-Ing. Jan-Peter Heckel

Wissenschaftlicher Mitarbeiter

Kontakt

Dr.-Ing. Jan-Peter Heckel
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung (Terminabsprache per E-Mail)
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.014
Tel: +49 40 42878 2381
Logo

Forschungsprojekte

VeN²uS
Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

VeN²uS

Vernetzte Netzschutzsysteme - Adaptiv und vernetzt

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2024

ResiliEntEE
Resilienz gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien

ResiliEntEE

Resilienz gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien

Technische Universität Hamburg (TUHH); Laufzeit: 2017 bis 2021

Publikationen

TUHH Open Research (TORE)

2023

2022

2021

2020

2019

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde (PBL)
Subtitle:
Diese Lehrveranstaltung ist Teil des Moduls: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde
Semester:
SoSe 24
Course type:
PBL -Projekt-/problembasierte Lehrveranstaltung (Lehre)
Course number:
lv2614_s24
Lecturer:
Prof. Dr. Bodo Fiedler
Description:

Die Studierenden erhalten die Aufgabenstellung in Form eines Materialdesigns für Prüfkörper aus Faserverbundwerkstoffen. Technische und normative Anforderungen sind in der Aufgabenstellung aufgeführt, alle weiteren benötigten Informationen stammen aus den Vorlesungen und Übungen bzw. den entsprechenden Unterlagen (elektronisch und im Gespräch).

Das Vorgehen ist in einem Meilensteinplan festgelegt und ermöglicht es den Studierenden, Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Am Ende des Projekts wurden verschiedene Probekörper im Zug- oder Biegeversuch geprüft.

In den einzelnen Projektbesprechungen wird die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen werden analysiert, die Produktionsmethoden werden bewertet und festgelegt. Die Werkstoffe werden ausgewählt und die Probekörper normgerecht hergestellt. Die Qualität und die mechanischen Eigenschaften werden geprüft und klassifiziert. Am Ende wird ein Abschlussbericht erstellt und die Ergebnisse werden allen Teilnehmern in Form einer Präsentation vorgestellt und diskutiert.


Performance accreditation:
m1343-2021 - Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde<ul><li>p1232-2021 - Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde: Klausur schriftlich</li></ul>
ECTS credit points:
2
Stud.IP informationen about this course:
Home institute: unbekanntes Institut
Registered participants in Stud.IP: 1

Betreute Abschlussarbeiten

laufende

2024

  • Kumar, Melvin (2024). Automatische Erstellung von Simulationsmodellen für die Untersuchung der Auswirkung einer Netzaggregation auf die Kurschlusseigenschaften eines Netzes.

beendete

2024

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

2023

  • Engemann, T. (2023). Nachbildung des Betriebsverhaltens einer Windkraftanlage in einer Laborumgebung.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Heunda, J. (2023). Dynamische Lastmodellierung zur adaptiven Schutzparametrierung in elektrischen Verteilnetzen.

  • Hube, P. (2023). Quantitative Bewertung des Mehrwerts einer adaptiven gegenüber einer konventionellen Netzschutzparametrierung.

  • Hube, P. (2023). Modellierung und Analyse des Kurzschlussverhaltens von Typ 4 umrichtergekoppelten Windkraftanlagen.

  • Kock am Brink, J. (2023). Vergleich von Spannungsstabilitätskennzahlen und deren Eignung als Resilienzindex.

  • Stoffregen, J. F. (2023). Implementierung und Simulation eines Testnetzes für die Mehrwertbetrachtung eines adaptiven Netzschutzes.

2022

  • Hillebrecht, T. (2022). Entwicklung und Implementierung eines Verfahrens zur Online-Detektion von Spannungsin-stabilitäten in gekoppelten Energiesystemen.

  • Schill, G. (2022). Untersuchung von Störungskaskaden in sektorengekoppelten Energiesystemen mittels einer Resilienzkennzahl.

2021

  • Ducci, D. (2021). Untersuchung der Bereitstellung von Regelleistung durch virtuelle Kraftwerke in sektorengekoppelten Energiesystemen.

  • Gomez Anccas, E. D. (2021). Entwicklung einer Methodik zur quantitativen Untersuchung und Bewertung dynamischer Interaktionen in gekoppelten Energiesystemen.

2020

  • Dressel, M. (2020). Untersuchung von spannungsstabilitätsbedingten Resilienzveränderungen im norddeutschen Energiesystem.

  • Gomez Anccas, E. D. (2020). Entwicklung eines Testmodells zur Untersuchung dynamischer Interaktionen in gekoppelten Energiesystemen.

  • Luo, K. (2020). Untersuchung der Auswirkungen des Netzentwicklungsplans 2025 auf die Netztopologie in Norddeutschland.

2019

  • Bredenberg, H. (2019). Optimierungssystem zur Netzplanung für die Mittelspannungsebene unter Berücksichtigung möglicher Entwicklungsszenarien.

  • Faili, Z. (2019). Analysis of the Voltage Stability in the Northern German Electrical Grid with Dynamic Simulation.

  • Häbel, I. (2019). Aggregation von Netzdaten für die numerisch effiziente Simulation gekoppelter Energiesysteme.

  • Krupp, M. (2019). Entwicklung und Integration eines Simulationsmodells für vermaschte Mehrpunkt-HGÜ-Systeme im Rahmen der Power System Toolbox.

2018

  • Dressel, M. (2018). Entwicklung und Integration eines Testnetzes zur Nachbildung des elektrischen Energiesystems von Nordeutschland für die Simuation energietechnischer Szenarien.