Christina Eckel

M.Sc.
Wissenschaftliche Mitarbeiterin

Kontakt

Christina Eckel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.002
Tel: +49 40 42878 2377
Logo

Forschungsprojekt

Stabilität und Netzregelung in Übertragungsnetzen mit leistungselektronisch gekoppelten Betriebsmitteln

Stabilität und Netzregelung in Übertragungsnetzen mit leistungselektronisch gekoppelten Betriebsmitteln

Technische Universität Hamburg (TUHH); Laufzeit: 2021 bis 2025

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Industrial Processes Under High Pressure (VL)
Untertitel:
This course is part of the module: High Pressure Chemical Engineering
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv116_s24
DozentIn:
Carsten Zetzl
Beschreibung:
Part I : Physical Chemistry and Thermodynamics

1.      Introduction: Overview, achieving high pressure, range of parameters.

2.       Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy,     entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension.

3.      Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria

4.      Overview on calculation methods for (high pressure) phase equilibria).
Influence of pressure on transport processes, heat and mass transfer.

Part II : High Pressure Processes

5.      Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases)

6.      Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation)

7.      Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure

Part III :  Industrial production

8.      Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO)

9.      Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery

10.  Industrial High Pressure Applications in Biofuel and Biodiesel Production

11.  Sterilization and Enzyme Catalysis

12.  Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor.

13.   Supercritical fluids for materials processing.

14.  Cost Engineering

Learning Outcomes:  

After a successful completion of this module, the student should be able to

-         understand of the influences of pressure on properties of compounds, phase equilibria, and production processes.

-         Apply high pressure approches in the complex process design tasks

-         Estimate Efficiency of high pressure alternatives with respect to investment and operational costs


Performance Record:

1.  Presence  (28 h)

2. Oral presentation of original scientific article (15 min) with written summary

3. Written examination and Case study 

    ( 2+3 : 32 h Workload)

Workload:

60 hours total

Leistungsnachweis:
645 - High Pressure Chemical Engineering<ul><li>645 - High Pressure Chemical Engineering: Klausur schriftlich</li></ul><br>646 - High Pressure Chemical Engineering<ul><li>645 - High Pressure Chemical Engineering: Klausur schriftlich</li><li>845 - Compulsory Course Work High Pressure Chemical Engineering - Presentation: Presentation</li></ul>
ECTS-Kreditpunkte:
2
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Thermische Verfahrenstechnik (V-8)
In Stud.IP angemeldete Teilnehmer: 1

Betreute Abschlussarbeiten

laufende

2024

  • Bahe, B. (2024). Nichtlineare Stabilitätsuntersuchungen in einem leistungselektronisch dominierten elektrischen Energiesystem.

beendete

2024

  • Boehm, E. (2024). Einfluss des Netzäquivalents auf die Stabilität eines Netzes mit netzbildenden und netzfolgenden Umrichtern.

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

  • Rüter, C. (2024). Einfluss der Netzstärke auf die Kleinsignalstabilität netzbildender Umrichter mit virtueller Oszillator-Regelung.

  • Schultheiß, J. (2024). Impedanzbasierte Stabilitätsanalyse zur Bewertung der Stabilitätsgrenzen von DC- und AC-Netzen.

2023

  • Chouiter, B. (2023). Dynamic Phasor Modelling and Comparison to Classical EMT Models.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Kamma, J. (2023). Umrichtermodellierung zur Repräsentation von Interaktionen im Sinne der Converter-Driven Stability.

  • Mißfeldt, C. (2023). Einfluss von Zeitverzögerungen auf die Converter-Driven Stability.

  • Rosenau, Y. (2023). Einfluss netzbildender Umrichter-Regelungsstrukturen auf die "Converter-Driven Stability".

2022

  • Kumar, M. (2022). Modellierung und Vergleich des Frequenzverhaltens dezentraler Anlagen mit netzbildenden Eigenschaften oder beigestellter Schwungmasse.

  • Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.

  • Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.