Dr. Davood Babazadeh

Gastdozent

Kontakt

Dr. Davood Babazadeh
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.018
Logo

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2009

Lehrveranstaltungen

Stud.IP
link to course in Stud.IP Studip_icon
Microsystems Technology (PBL)
Subtitle:
This course is part of the module: Microsystems Technology in Theory and Practice
Semester:
WiSe 23/24
Course type:
PBL -Projekt-/problembasierte Lehrveranstaltung (Lehre)
Course number:
lv725_w23
Lecturer:
Prof. Dr. Hoc Khiem Trieu
Description:
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Performance accreditation:
620 - Microsystems Technology in Theory and Practice<ul><li>620 - Microsystems Technology in Theory and Practice: mündlich</li></ul><br>621 - Microsystems Technology in Theory and Practice<ul><li>620 - Microsystems Technology in Theory and Practice: mündlich</li><li>820 - Microsystems Technology in Theory and Practice - Practical Coursework: Subject theoretical and practical work</li></ul>
ECTS credit points:
2
Stud.IP informationen about this course:
Home institute: Institut für Mikrosystemtechnik (E-7)
Registered participants in Stud.IP: 1