Completed projects

Actuation and Imaging of Magnetic Nanoparticles
Magnetic Particle Imaging

Actuation and Imaging of Magnetic Nanoparticles

In this project, we exploit the ability of magnetic particle imaging to manipulate magnetic particles with magnetic force and simultaneously image the particles by switching between both modes. In the imaging mode, we perform a normal imaging sequence, while in the force mode, we use the focus fields to move the FFP away from the particles to induce a magnetic force by increasing the magnetic field strength at the particle position. We are able to continuously switch between imaging and force modes and obtain a temporal imaging resolution of 4Hz.

 

Magnetic force mode
In order to be able to see this content, you must accept the integration of external content. Find out more in our privacy policy

Members

 

Publications

Publications

[133252]
Title: Toward employing the full potential of magnetic particle imaging: exploring visualization techniques and clinical use cases for real-time 3D vascular imaging. <em>Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging</em>
Written by: R. Werner, D. Weller and J. Salamon and M. Möddel, and T. Knopp
in: (2019).
Volume: <strong>10953</strong>. Number:
on pages: 426 -- 431
Chapter:
Editor: In Barjor Gimi and Andrzej Krol (Eds.)
Publisher: SPIE:
Series:
Address:
Edition:
ISBN:
how published:
Organization: International Society for Optics and Photonics
School:
Institution:
Type:
DOI: 10.1117/12.2512442
URL: https://doi.org/10.1117/12.2512442
ARXIVID:
PMID:

[www]

Note: inproceedings, interventional

Abstract: Magnetic particle imaging (MPI) is a relatively young, radiation-free imaging modality that measures the interaction between superparamagnetic nanoparticles and magnetic fields. Compared to standard imaging modalities, a key feature of MPI is its ability to measure 3D volumes of relatively high spatial resolution in real-time, while still maintaining high sensitivity. Therefore, MPI is considered promising especially for vascular imaging and interventions. Yet, to fully take advantage of the unique MPI properties, real-time 4D imaging has to be combined with appropriate real-time 4D visualization and image analysis techniques. The current work aims at identification of respective clinical use cases and scenarios to illustrate the potential of MPI in the context of vascular imaging and interventions; the implementation and exploration of suitable visualization and image analysis techniques; and evaluation and comparison of the resulting image data to standard clinical imaging approaches. The study is based on three clinical use cases and associated anatomical sites: mechanical thrombectomy (anatomical structure: middle cerebral artery, segments M1 and M2); endovascular coiling (internal carotid artery aneurysm); and chemoembolization (proper hepatic artery). Implemented visualization and image analysis options are based on direct volume rendering and cover aspects like optimal view point and view angle selection and application of cut-away views. We illustrate that combining MPI imaging and 4D visualization helps to improve vascular image interpretation.

Bimodal Fiducial Markers
Magnetic Particle Imaging

Bimodal MRI/MPI Fiducial Markers

In this project we develop bimodal fiducial markers for magnetic resonance and magnetic particle imaging to perform positioning within MPI experiments and to register and fuse images of both modalities.

Compared to most other medical imaging techniques MPI only visualizes an applied tracer without additional morphological information. However, this information is crucial for the interpretation of magnetic particle images and the positioning of objects within the MPI scanner.

Our bimodal fiducial markers provide visual landmarks in MP and MR images. These landmarks can be used as points of reference to perform faithful positioning within the MPI scanner prior to MPI experiments. Furthermore, they can be used for an automated image registration and fusion.

Members

Grants

This project was funded by the FMTHH (grant number 01fmthh15)

 

Publications

Publications

[133252]
Title: Toward employing the full potential of magnetic particle imaging: exploring visualization techniques and clinical use cases for real-time 3D vascular imaging. <em>Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging</em>
Written by: R. Werner, D. Weller and J. Salamon and M. Möddel, and T. Knopp
in: (2019).
Volume: <strong>10953</strong>. Number:
on pages: 426 -- 431
Chapter:
Editor: In Barjor Gimi and Andrzej Krol (Eds.)
Publisher: SPIE:
Series:
Address:
Edition:
ISBN:
how published:
Organization: International Society for Optics and Photonics
School:
Institution:
Type:
DOI: 10.1117/12.2512442
URL: https://doi.org/10.1117/12.2512442
ARXIVID:
PMID:

[www]

Note: inproceedings, interventional

Abstract: Magnetic particle imaging (MPI) is a relatively young, radiation-free imaging modality that measures the interaction between superparamagnetic nanoparticles and magnetic fields. Compared to standard imaging modalities, a key feature of MPI is its ability to measure 3D volumes of relatively high spatial resolution in real-time, while still maintaining high sensitivity. Therefore, MPI is considered promising especially for vascular imaging and interventions. Yet, to fully take advantage of the unique MPI properties, real-time 4D imaging has to be combined with appropriate real-time 4D visualization and image analysis techniques. The current work aims at identification of respective clinical use cases and scenarios to illustrate the potential of MPI in the context of vascular imaging and interventions; the implementation and exploration of suitable visualization and image analysis techniques; and evaluation and comparison of the resulting image data to standard clinical imaging approaches. The study is based on three clinical use cases and associated anatomical sites: mechanical thrombectomy (anatomical structure: middle cerebral artery, segments M1 and M2); endovascular coiling (internal carotid artery aneurysm); and chemoembolization (proper hepatic artery). Implemented visualization and image analysis options are based on direct volume rendering and cover aspects like optimal view point and view angle selection and application of cut-away views. We illustrate that combining MPI imaging and 4D visualization helps to improve vascular image interpretation.

Guidance of Vascular Interventions
Magnetic Particle Imaging

Interventional Magnetic Particle Imaging

Magnetic particle imaging is a new radiation-free tomographic imaging method providing fast, background-free, sensitive, directly quantifiable information about the spatial distribution of SPIOs at high temporal resolution. In this project we investigate its potential to offer an alternative to traditional Digital subtraction angiography in interventional procedures.

Multi-contrast MPI makes it possible to jointly image blood pool tracer and labeled cardiovascular devices.

Members

 

Publications

Publications

[133252]
Title: Toward employing the full potential of magnetic particle imaging: exploring visualization techniques and clinical use cases for real-time 3D vascular imaging. <em>Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging</em>
Written by: R. Werner, D. Weller and J. Salamon and M. Möddel, and T. Knopp
in: (2019).
Volume: <strong>10953</strong>. Number:
on pages: 426 -- 431
Chapter:
Editor: In Barjor Gimi and Andrzej Krol (Eds.)
Publisher: SPIE:
Series:
Address:
Edition:
ISBN:
how published:
Organization: International Society for Optics and Photonics
School:
Institution:
Type:
DOI: 10.1117/12.2512442
URL: https://doi.org/10.1117/12.2512442
ARXIVID:
PMID:

[www]

Note: inproceedings, interventional

Abstract: Magnetic particle imaging (MPI) is a relatively young, radiation-free imaging modality that measures the interaction between superparamagnetic nanoparticles and magnetic fields. Compared to standard imaging modalities, a key feature of MPI is its ability to measure 3D volumes of relatively high spatial resolution in real-time, while still maintaining high sensitivity. Therefore, MPI is considered promising especially for vascular imaging and interventions. Yet, to fully take advantage of the unique MPI properties, real-time 4D imaging has to be combined with appropriate real-time 4D visualization and image analysis techniques. The current work aims at identification of respective clinical use cases and scenarios to illustrate the potential of MPI in the context of vascular imaging and interventions; the implementation and exploration of suitable visualization and image analysis techniques; and evaluation and comparison of the resulting image data to standard clinical imaging approaches. The study is based on three clinical use cases and associated anatomical sites: mechanical thrombectomy (anatomical structure: middle cerebral artery, segments M1 and M2); endovascular coiling (internal carotid artery aneurysm); and chemoembolization (proper hepatic artery). Implemented visualization and image analysis options are based on direct volume rendering and cover aspects like optimal view point and view angle selection and application of cut-away views. We illustrate that combining MPI imaging and 4D visualization helps to improve vascular image interpretation.

Online Reconstruction
Magnetic Particle Imaging

Online Reconstruction for Magnetic Particle Imaging

MPI is an imaging modality that provides very high acquisition rates with up to 46 volumes per second. However, in practice in order to show images of the SPIO distribution directly on the screen it is equally important that the data reconstruction is fast enough to handle the incoming raw data from the receiver unit. Within this project we develop efficient algorithms that allow to reconstruct the SPIO distribution in near real-time such that the reconstructed images can be shown directly on the acquisition computer.

Publications

[133252]
Title: Toward employing the full potential of magnetic particle imaging: exploring visualization techniques and clinical use cases for real-time 3D vascular imaging. <em>Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging</em>
Written by: R. Werner, D. Weller and J. Salamon and M. Möddel, and T. Knopp
in: (2019).
Volume: <strong>10953</strong>. Number:
on pages: 426 -- 431
Chapter:
Editor: In Barjor Gimi and Andrzej Krol (Eds.)
Publisher: SPIE:
Series:
Address:
Edition:
ISBN:
how published:
Organization: International Society for Optics and Photonics
School:
Institution:
Type:
DOI: 10.1117/12.2512442
URL: https://doi.org/10.1117/12.2512442
ARXIVID:
PMID:

[www]

Note: inproceedings, interventional

Abstract: Magnetic particle imaging (MPI) is a relatively young, radiation-free imaging modality that measures the interaction between superparamagnetic nanoparticles and magnetic fields. Compared to standard imaging modalities, a key feature of MPI is its ability to measure 3D volumes of relatively high spatial resolution in real-time, while still maintaining high sensitivity. Therefore, MPI is considered promising especially for vascular imaging and interventions. Yet, to fully take advantage of the unique MPI properties, real-time 4D imaging has to be combined with appropriate real-time 4D visualization and image analysis techniques. The current work aims at identification of respective clinical use cases and scenarios to illustrate the potential of MPI in the context of vascular imaging and interventions; the implementation and exploration of suitable visualization and image analysis techniques; and evaluation and comparison of the resulting image data to standard clinical imaging approaches. The study is based on three clinical use cases and associated anatomical sites: mechanical thrombectomy (anatomical structure: middle cerebral artery, segments M1 and M2); endovascular coiling (internal carotid artery aneurysm); and chemoembolization (proper hepatic artery). Implemented visualization and image analysis options are based on direct volume rendering and cover aspects like optimal view point and view angle selection and application of cut-away views. We illustrate that combining MPI imaging and 4D visualization helps to improve vascular image interpretation.