Surveillance MPI Scanner for Stroke Detection on the Intensive Care Stroke Unit

Scientists at the Technical University of Hamburg (TUHH) and the University Hospital Hamburg-Eppendorf (UKE) have developed a new diagnostic tomographic imaging system that enables access to cerebral blood flow at short intervals and thus quickly indicates a possible stroke. The study "Human-sized Magnetic Particle Imaging for Brain Applications" was published on the 26th of April 2019 in the renowned journal Nature Communications.

On the road to full real-time 3D imaging using approved clinical tracers, the MPI scanner has been extensively upgraded from 2019 to 2023. Several publications document the process and highlight the development of new components, like the study "Heat it up: Thermal stabilization by active heating to reduce impedance drifts in capacitive matched networks", "Gradient power reducing using pulsed selection-field sequences" or "Resonant inductive coupling network for human-sized magnetic particle imaging". A thorough exploration is presented in "System characterization of a human-sized 3D real-time magnetic particle imaging scanner for cerebral applications".

Prof. Tobias Knopp and Dr. Matthias Gräser with the surveillance imager

Project Publications

[164765]
Title: Heat it up: Thermal stabilization by active heating to reduce impedance drifts in capacitive matched networks.
Written by: F. Thieben, F. Foerger, F. Mohn, F. Sevecke, T. Knopp, and M. Graeser
in: <em>International Journal on Magnetic Particle Imaging</em>. (2022).
Volume: <strong>8</strong>. Number: (1),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2022.2203014
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/434
ARXIVID:
PMID:

[www]

Note: inproceedings, brainimager

Abstract: The achievable sensitivity in Magnetic Particle Imaging is not only limited by noise, but also depends on the stability of the system. Thermal dependencies of the current carrying components lead to drive-field distortions in amplitude and phase causing drifting background signals. In this work, an active capacitor heating system is developed that allows for thermal stabilization and trimming a resonance circuit to the desired frequency.