Surveillance MPI Scanner for Stroke Detection on the Intensive Care Stroke Unit

Scientists at the Technical University of Hamburg (TUHH) and the University Hospital Hamburg-Eppendorf (UKE) have developed a new diagnostic tomographic imaging system that enables access to cerebral blood flow at short intervals and thus quickly indicates a possible stroke. The study "Human-sized Magnetic Particle Imaging for Brain Applications" was published on the 26th of April 2019 in the renowned journal Nature Communications.

On the road to full real-time 3D imaging using approved clinical tracers, the MPI scanner has been extensively upgraded from 2019 to 2023. Several publications document the process and highlight the development of new components, like the study "Heat it up: Thermal stabilization by active heating to reduce impedance drifts in capacitive matched networks", "Gradient power reducing using pulsed selection-field sequences" or "Resonant inductive coupling network for human-sized magnetic particle imaging". A thorough exploration is presented in "System characterization of a human-sized 3D real-time magnetic particle imaging scanner for cerebral applications".

Prof. Tobias Knopp and Dr. Matthias Gräser with the surveillance imager

Project Publications

[120372]
Title: Interpretation of Cartesian Data based on a Simulated Human-Sized MPI Brain Imager. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em>
Written by: P. Szwargulski, M. Graeser, F. Thieben, N. Gdaniec, F. Werner, M. Boberg, F. Griese, M. Möddel, and T. Knopp
in: (2019).
Volume: Number:
on pages: 37-38
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL:
ARXIVID:
PMID:

Note: inproceedings, brainimager

Abstract: Recently the first proof of concept for a human scaled MPI scanner for brain applications was presented. It features a new imaging concept with a mechanically moveable selection field and uses a dynamic Cartesian imaging sequence. In this work, different kinds of data processing and image reconstruction approaches for Cartesian sequences are compared.