[120377] |
Title: Stroke Detection using Magnetic Particle Imaging: A Phantom Study using a Human-sized Brain Phantom. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Werner, M. Gräser, F. Thieben, P Szwargulski, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 141-142 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is essential for rapid diagnosis and therapy of vascular diseases such as an acute stroke. Due to the potential risk of restenosis, the patient must be closely monitored the days after treatment. Recently, the first human-sized magnetic particle imager for brain applications has been introduced. In comparison to conventional techniques, the technical realization of the device allows for the use on intensive care units making repetitive monitoring possible. In this work, a human-sized brain phantom was designed and measurements were performed to prove the suitability of the device for visualizing perfusion deficits.
[120377] |
Title: Stroke Detection using Magnetic Particle Imaging: A Phantom Study using a Human-sized Brain Phantom. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Werner, M. Gräser, F. Thieben, P Szwargulski, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 141-142 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is essential for rapid diagnosis and therapy of vascular diseases such as an acute stroke. Due to the potential risk of restenosis, the patient must be closely monitored the days after treatment. Recently, the first human-sized magnetic particle imager for brain applications has been introduced. In comparison to conventional techniques, the technical realization of the device allows for the use on intensive care units making repetitive monitoring possible. In this work, a human-sized brain phantom was designed and measurements were performed to prove the suitability of the device for visualizing perfusion deficits.
[120377] |
Title: Stroke Detection using Magnetic Particle Imaging: A Phantom Study using a Human-sized Brain Phantom. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Werner, M. Gräser, F. Thieben, P Szwargulski, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 141-142 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is essential for rapid diagnosis and therapy of vascular diseases such as an acute stroke. Due to the potential risk of restenosis, the patient must be closely monitored the days after treatment. Recently, the first human-sized magnetic particle imager for brain applications has been introduced. In comparison to conventional techniques, the technical realization of the device allows for the use on intensive care units making repetitive monitoring possible. In this work, a human-sized brain phantom was designed and measurements were performed to prove the suitability of the device for visualizing perfusion deficits.
[120377] |
Title: Stroke Detection using Magnetic Particle Imaging: A Phantom Study using a Human-sized Brain Phantom. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Werner, M. Gräser, F. Thieben, P Szwargulski, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 141-142 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is essential for rapid diagnosis and therapy of vascular diseases such as an acute stroke. Due to the potential risk of restenosis, the patient must be closely monitored the days after treatment. Recently, the first human-sized magnetic particle imager for brain applications has been introduced. In comparison to conventional techniques, the technical realization of the device allows for the use on intensive care units making repetitive monitoring possible. In this work, a human-sized brain phantom was designed and measurements were performed to prove the suitability of the device for visualizing perfusion deficits.
[120377] |
Title: Stroke Detection using Magnetic Particle Imaging: A Phantom Study using a Human-sized Brain Phantom. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Werner, M. Gräser, F. Thieben, P Szwargulski, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 141-142 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is essential for rapid diagnosis and therapy of vascular diseases such as an acute stroke. Due to the potential risk of restenosis, the patient must be closely monitored the days after treatment. Recently, the first human-sized magnetic particle imager for brain applications has been introduced. In comparison to conventional techniques, the technical realization of the device allows for the use on intensive care units making repetitive monitoring possible. In this work, a human-sized brain phantom was designed and measurements were performed to prove the suitability of the device for visualizing perfusion deficits.
[120377] |
Title: Stroke Detection using Magnetic Particle Imaging: A Phantom Study using a Human-sized Brain Phantom. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Werner, M. Gräser, F. Thieben, P Szwargulski, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 141-142 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is essential for rapid diagnosis and therapy of vascular diseases such as an acute stroke. Due to the potential risk of restenosis, the patient must be closely monitored the days after treatment. Recently, the first human-sized magnetic particle imager for brain applications has been introduced. In comparison to conventional techniques, the technical realization of the device allows for the use on intensive care units making repetitive monitoring possible. In this work, a human-sized brain phantom was designed and measurements were performed to prove the suitability of the device for visualizing perfusion deficits.