Current Publications

Journal Publications
since 2022

Recent Journal Publications

[145062]
Title: Reducing displacement artifacts by warping system matrices in efficient joint multi-patch magnetic particle imaging.
Written by: M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009030
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/292
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, multi-patch, artifact, magneticfield

Abstract: The reconstruction of multi-patch magnetic particle imaging data requires a compromise between image quality and calibration time. While optimal image quality is ensured by the joint reconstruction approach, a system matrix needs to be acquired for each patch. One can reuse system matrices by shifting them in space, which decreases the calibration effort but leads to distortions due to field imperfections. In this work, we introduce a method for reducing displacement artifacts in the efficient joint multi-patch reconstruction. Based on the magnetic fields we propose a mapping that warps the central system matrix to capture the spatial displacement of off-center system matrices. In this way, we can maintain the low calibration time while significantly improving the image quality.

Conference Abstracts and Proceedings
since 2022

Recent Conference Abstracts and Proceedings

[145062]
Title: Reducing displacement artifacts by warping system matrices in efficient joint multi-patch magnetic particle imaging.
Written by: M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009030
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/292
ARXIVID:
PMID:

[www]

Note: inproceedings, multi-patch, artifact, magneticfield

Abstract: The reconstruction of multi-patch magnetic particle imaging data requires a compromise between image quality and calibration time. While optimal image quality is ensured by the joint reconstruction approach, a system matrix needs to be acquired for each patch. One can reuse system matrices by shifting them in space, which decreases the calibration effort but leads to distortions due to field imperfections. In this work, we introduce a method for reducing displacement artifacts in the efficient joint multi-patch reconstruction. Based on the magnetic fields we propose a mapping that warps the central system matrix to capture the spatial displacement of off-center system matrices. In this way, we can maintain the low calibration time while significantly improving the image quality.

Publications

Journal Publications
since 2014

Journal Publications

[145062]
Title: Reducing displacement artifacts by warping system matrices in efficient joint multi-patch magnetic particle imaging.
Written by: M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009030
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/292
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, multi-patch, artifact, magneticfield

Abstract: The reconstruction of multi-patch magnetic particle imaging data requires a compromise between image quality and calibration time. While optimal image quality is ensured by the joint reconstruction approach, a system matrix needs to be acquired for each patch. One can reuse system matrices by shifting them in space, which decreases the calibration effort but leads to distortions due to field imperfections. In this work, we introduce a method for reducing displacement artifacts in the efficient joint multi-patch reconstruction. Based on the magnetic fields we propose a mapping that warps the central system matrix to capture the spatial displacement of off-center system matrices. In this way, we can maintain the low calibration time while significantly improving the image quality.

Conference Abstracts and Proceedings
since 2014

Conference Abstracts and Proceedings

[145062]
Title: Reducing displacement artifacts by warping system matrices in efficient joint multi-patch magnetic particle imaging.
Written by: M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009030
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/292
ARXIVID:
PMID:

[www]

Note: inproceedings, multi-patch, artifact, magneticfield

Abstract: The reconstruction of multi-patch magnetic particle imaging data requires a compromise between image quality and calibration time. While optimal image quality is ensured by the joint reconstruction approach, a system matrix needs to be acquired for each patch. One can reuse system matrices by shifting them in space, which decreases the calibration effort but leads to distortions due to field imperfections. In this work, we introduce a method for reducing displacement artifacts in the efficient joint multi-patch reconstruction. Based on the magnetic fields we propose a mapping that warps the central system matrix to capture the spatial displacement of off-center system matrices. In this way, we can maintain the low calibration time while significantly improving the image quality.

Publications Pre-dating the Institute

Publications
2007-2013

Old Publications

[145062]
Title: Reducing displacement artifacts by warping system matrices in efficient joint multi-patch magnetic particle imaging.
Written by: M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009030
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/292
ARXIVID:
PMID:

[www]

Note: inproceedings, multi-patch, artifact, magneticfield

Abstract: The reconstruction of multi-patch magnetic particle imaging data requires a compromise between image quality and calibration time. While optimal image quality is ensured by the joint reconstruction approach, a system matrix needs to be acquired for each patch. One can reuse system matrices by shifting them in space, which decreases the calibration effort but leads to distortions due to field imperfections. In this work, we introduce a method for reducing displacement artifacts in the efficient joint multi-patch reconstruction. Based on the magnetic fields we propose a mapping that warps the central system matrix to capture the spatial displacement of off-center system matrices. In this way, we can maintain the low calibration time while significantly improving the image quality.

Open Access Publications

Journal Publications
since 2014

Open Access Publications

[145062]
Title: Reducing displacement artifacts by warping system matrices in efficient joint multi-patch magnetic particle imaging.
Written by: M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009030
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/292
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, multi-patch, artifact, magneticfield

Abstract: The reconstruction of multi-patch magnetic particle imaging data requires a compromise between image quality and calibration time. While optimal image quality is ensured by the joint reconstruction approach, a system matrix needs to be acquired for each patch. One can reuse system matrices by shifting them in space, which decreases the calibration effort but leads to distortions due to field imperfections. In this work, we introduce a method for reducing displacement artifacts in the efficient joint multi-patch reconstruction. Based on the magnetic fields we propose a mapping that warps the central system matrix to capture the spatial displacement of off-center system matrices. In this way, we can maintain the low calibration time while significantly improving the image quality.