Current Publications

Journal Publications
since 2022

Recent Journal Publications

[191963]
Title: Current-to-Field Prediction for Non-Linear Magnetic Systems via Neural Networks.
Written by: F. Foerger, P. Jürß, M. Boberg, T. Hau, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503009
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/862
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.

Conference Abstracts and Proceedings
since 2022

Recent Conference Abstracts and Proceedings

[191963]
Title: Current-to-Field Prediction for Non-Linear Magnetic Systems via Neural Networks.
Written by: F. Foerger, P. Jürß, M. Boberg, T. Hau, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503009
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/862
ARXIVID:
PMID:

[www]

Note: inproceedings, magneticfield, ml

Abstract: Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.

Publications

Journal Publications
since 2014

Journal Publications

[191963]
Title: Current-to-Field Prediction for Non-Linear Magnetic Systems via Neural Networks.
Written by: F. Foerger, P. Jürß, M. Boberg, T. Hau, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503009
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/862
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.

Conference Abstracts and Proceedings
since 2014

Conference Abstracts and Proceedings

[191963]
Title: Current-to-Field Prediction for Non-Linear Magnetic Systems via Neural Networks.
Written by: F. Foerger, P. Jürß, M. Boberg, T. Hau, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503009
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/862
ARXIVID:
PMID:

[www]

Note: inproceedings, magneticfield, ml

Abstract: Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.

Publications Pre-dating the Institute

Publications
2007-2013

Old Publications

[191963]
Title: Current-to-Field Prediction for Non-Linear Magnetic Systems via Neural Networks.
Written by: F. Foerger, P. Jürß, M. Boberg, T. Hau, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503009
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/862
ARXIVID:
PMID:

[www]

Note: inproceedings, magneticfield, ml

Abstract: Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.

Open Access Publications

Journal Publications
since 2014

Open Access Publications

[191963]
Title: Current-to-Field Prediction for Non-Linear Magnetic Systems via Neural Networks.
Written by: F. Foerger, P. Jürß, M. Boberg, T. Hau, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503009
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/862
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.