Current Publications

Journal Publications
since 2022

Recent Journal Publications

[77642]
Title: Submillimeter-Accurate Marker Localization within Low Gradient Magnetic Particle Imaging Tomograms.
Written by: F. Griese, T. Knopp, R. Werner, A. Schlaefer, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2017).
Volume: <strong>3</strong>. Number: (1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/103
ARXIVID:
PMID:

[www] [BibTex]

Note: article, fiducial, openaccess

Abstract: Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time medical applications such as device tracking and navigation. These applications usually rely on automated techniques for finding and localizing devices and fiducial markers in medical images. In this work, we show that submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass of the gray values inside the pre-segmented regions. A series of phantom measurements taken at full temporal resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability of the automatic submillimeter-accurate marker localization algorithm.

Conference Abstracts and Proceedings
since 2022

Recent Conference Abstracts and Proceedings

[77642]
Title: Submillimeter-Accurate Marker Localization within Low Gradient Magnetic Particle Imaging Tomograms.
Written by: F. Griese, T. Knopp, R. Werner, A. Schlaefer, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2017).
Volume: <strong>3</strong>. Number: (1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/103
ARXIVID:
PMID:

[www]

Note: article, fiducial, openaccess

Abstract: Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time medical applications such as device tracking and navigation. These applications usually rely on automated techniques for finding and localizing devices and fiducial markers in medical images. In this work, we show that submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass of the gray values inside the pre-segmented regions. A series of phantom measurements taken at full temporal resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability of the automatic submillimeter-accurate marker localization algorithm.

Publications

Journal Publications
since 2014

Journal Publications

[77642]
Title: Submillimeter-Accurate Marker Localization within Low Gradient Magnetic Particle Imaging Tomograms.
Written by: F. Griese, T. Knopp, R. Werner, A. Schlaefer, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2017).
Volume: <strong>3</strong>. Number: (1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/103
ARXIVID:
PMID:

[www] [BibTex]

Note: article, fiducial, openaccess

Abstract: Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time medical applications such as device tracking and navigation. These applications usually rely on automated techniques for finding and localizing devices and fiducial markers in medical images. In this work, we show that submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass of the gray values inside the pre-segmented regions. A series of phantom measurements taken at full temporal resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability of the automatic submillimeter-accurate marker localization algorithm.

Conference Abstracts and Proceedings
since 2014

Conference Abstracts and Proceedings

[77642]
Title: Submillimeter-Accurate Marker Localization within Low Gradient Magnetic Particle Imaging Tomograms.
Written by: F. Griese, T. Knopp, R. Werner, A. Schlaefer, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2017).
Volume: <strong>3</strong>. Number: (1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/103
ARXIVID:
PMID:

[www]

Note: article, fiducial, openaccess

Abstract: Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time medical applications such as device tracking and navigation. These applications usually rely on automated techniques for finding and localizing devices and fiducial markers in medical images. In this work, we show that submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass of the gray values inside the pre-segmented regions. A series of phantom measurements taken at full temporal resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability of the automatic submillimeter-accurate marker localization algorithm.

Publications Pre-dating the Institute

Publications
2007-2013

Old Publications

[77642]
Title: Submillimeter-Accurate Marker Localization within Low Gradient Magnetic Particle Imaging Tomograms.
Written by: F. Griese, T. Knopp, R. Werner, A. Schlaefer, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2017).
Volume: <strong>3</strong>. Number: (1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/103
ARXIVID:
PMID:

[www]

Note: article, fiducial, openaccess

Abstract: Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time medical applications such as device tracking and navigation. These applications usually rely on automated techniques for finding and localizing devices and fiducial markers in medical images. In this work, we show that submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass of the gray values inside the pre-segmented regions. A series of phantom measurements taken at full temporal resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability of the automatic submillimeter-accurate marker localization algorithm.

Open Access Publications

Journal Publications
since 2014

Open Access Publications

[77642]
Title: Submillimeter-Accurate Marker Localization within Low Gradient Magnetic Particle Imaging Tomograms.
Written by: F. Griese, T. Knopp, R. Werner, A. Schlaefer, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2017).
Volume: <strong>3</strong>. Number: (1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/103
ARXIVID:
PMID:

[www] [BibTex]

Note: article, fiducial, openaccess

Abstract: Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time medical applications such as device tracking and navigation. These applications usually rely on automated techniques for finding and localizing devices and fiducial markers in medical images. In this work, we show that submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass of the gray values inside the pre-segmented regions. A series of phantom measurements taken at full temporal resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability of the automatic submillimeter-accurate marker localization algorithm.