Current Publications

Journal Publications
since 2022

Recent Journal Publications

[131420]
Title: Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions.
Written by: D. Weller, J. M. Salamon, A. Frölich, M. Möddel, T. Knopp, and R. Werner
in: <em>CardioVascular and Interventional Radiology</em>. Sep (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1007/s00270-019-02340-4
URL: https://doi.org/10.1007/s00270-019-02340-4
ARXIVID:
PMID:

[www] [BibTex]

Note: article, interventional, real-time

Abstract: Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models.

Conference Abstracts and Proceedings
since 2022

Recent Conference Abstracts and Proceedings

[131420]
Title: Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions.
Written by: D. Weller, J. M. Salamon, A. Frölich, M. Möddel, T. Knopp, and R. Werner
in: <em>CardioVascular and Interventional Radiology</em>. Sep (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1007/s00270-019-02340-4
URL: https://doi.org/10.1007/s00270-019-02340-4
ARXIVID:
PMID:

[www]

Note: article, interventional, real-time

Abstract: Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models.

Publications

Journal Publications
since 2014

Journal Publications

[131420]
Title: Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions.
Written by: D. Weller, J. M. Salamon, A. Frölich, M. Möddel, T. Knopp, and R. Werner
in: <em>CardioVascular and Interventional Radiology</em>. Sep (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1007/s00270-019-02340-4
URL: https://doi.org/10.1007/s00270-019-02340-4
ARXIVID:
PMID:

[www] [BibTex]

Note: article, interventional, real-time

Abstract: Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models.

Conference Abstracts and Proceedings
since 2014

Conference Abstracts and Proceedings

[131420]
Title: Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions.
Written by: D. Weller, J. M. Salamon, A. Frölich, M. Möddel, T. Knopp, and R. Werner
in: <em>CardioVascular and Interventional Radiology</em>. Sep (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1007/s00270-019-02340-4
URL: https://doi.org/10.1007/s00270-019-02340-4
ARXIVID:
PMID:

[www]

Note: article, interventional, real-time

Abstract: Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models.

Publications Pre-dating the Institute

Publications
2007-2013

Old Publications

[131420]
Title: Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions.
Written by: D. Weller, J. M. Salamon, A. Frölich, M. Möddel, T. Knopp, and R. Werner
in: <em>CardioVascular and Interventional Radiology</em>. Sep (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1007/s00270-019-02340-4
URL: https://doi.org/10.1007/s00270-019-02340-4
ARXIVID:
PMID:

[www]

Note: article, interventional, real-time

Abstract: Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models.

Open Access Publications

Journal Publications
since 2014

Open Access Publications

[131420]
Title: Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions.
Written by: D. Weller, J. M. Salamon, A. Frölich, M. Möddel, T. Knopp, and R. Werner
in: <em>CardioVascular and Interventional Radiology</em>. Sep (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1007/s00270-019-02340-4
URL: https://doi.org/10.1007/s00270-019-02340-4
ARXIVID:
PMID:

[www] [BibTex]

Note: article, interventional, real-time

Abstract: Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models.