Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[191927]
Title: Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials.
Written by: F. Foerger, M. Boberg, J. Faltinath, T. Knopp, M. Möddel
in: <em>Advanced Intelligent Systems</em>. (2024).
Volume: <strong>6</strong>. Number: (11),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1002/aisy.202400017
URL: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/aisy.202400017
ARXIVID:
PMID:

[www]

Note: article

Abstract: Magnetic field generators are a key component of Magnetic Particle Imaging (MPI) systems, and their power consumption is a major obstacle on the path to human-sized scanners. Despite their importance, a focused discussion of these generators is rare, and a comprehensive description of the design process is currently lacking. This work presents a methodology for the design and optimization of selection field generators operating with soft magnetic materials outside the linear regime in the context of MPI. Key elements are a mathematical model of magnetic field generators, a formalism for defining field sequences, and a relationship between power consumption and field sequence. These are used to define the design space of a field generator given its system requirements and constraints. The design process is then formulated as an optimization problem. Subsequently, this methodology is then utilized to design a new magnetic field generator specifically for cerebral imaging studies. The optimization result outperforms our existing MPI field generator in terms of power consumption and field of view size, providing a proof-of-concept for the entire methodology. As the approach is very general, it can be extended beyond the MPI context to other areas such as magnetic manipulation of medical devices and micro-robotics.