Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[191966]
Title: Efficient measurement and representation of magnetic fields in tomographic imaging using ellipsoidal harmonics.
Written by: K. Scheffler, L. Meyn, F. Foerger, M. Boberg, M. Möddel, and T. Knopp
in: <em>Communications Physics</em>. January (2025).
Volume: <strong>8</strong>. Number: (112),
on pages:
Chapter:
Editor:
Publisher: Nature:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s42005-025-02012-5
URL:
ARXIVID:
PMID:

Note: article, openaccess, magneticfield

Abstract: Given the pivotal role of magnetic fields in modern medicine, there is an increasing necessity for a precise characterization of their strength and orientation at high spatial and temporal resolution. As source-free magnetic fields present in tomographic imaging can be described by harmonic polynomials, they can be efficiently represented using spherical harmonic expansions, which allows for measurement at a small set of points on a sphere surrounding the field of view. However, the majority of closed-bore systems possess a cylindrical field of view, making a sphere an inadequate choice for coverage. Ellipsoids represent a superior geometrical choice, and the theory of ellipsoidal harmonic expansions can be applied to magnetic fields in an analogous manner. Despite the mathematical principles underpinning ellipsoidal harmonics being well-established, their utilization in practical applications remains relatively limited. In this study, we present an effective and flexible approach to measuring and representing magnetic fields present in tomographic imaging, which draws upon the theory of ellipsoidal harmonic expansions.