Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[191948]
Title: Model-based autofocus for near-field phase retrieval.
Written by: J. Dora, M. Möddel, S. Flenner, J. Reimers, B. Zeller-Plumhoff, C. G. Schroer, T. Knopp, and J. Hagemann
in: <em>Optics Express</em>. Feb (2025).
Volume: <strong>33</strong>. Number: (4),
on pages: 6641-6657
Chapter:
Editor:
Publisher: Optica Publishing Group:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1364/OE.544573
URL: https://opg.optica.org/oe/abstract.cfm?URI=oe-33-4-6641
ARXIVID:
PMID:

[www]

Note: article, openaccess

Abstract: The phase problem is a well known ill-posed reconstruction problem of coherent lens-less microscopic imaging, where only the intensities of a complex wave-field are measured by the detector and the phase information is lost. For the reconstruction of sharp images from holograms in a near-field experimental setting, it is crucial to solve the autofocus problem, i.e., to precisely estimate the Fresnel number of the forward model. Otherwise, blurred out-of focus images that also can contain artifacts are the result. In general, a simple distance measurement at the experiment is not sufficiently accurate, thus the fine-tuning of the Fresnel number has to be done prior to the actual reconstructions. This can be done manually or automatically by an estimation algorithm. To automatize the process, as needed, e.g., for in-situ/operando experiments, different focus criteria have been widely studied in literature but are subjected to certain restrictions. The methods often rely on image analysis of the reconstructed image, making them sensitive to image noise and also neglecting algorithmic properties of the applied phase retrieval. In this paper, we propose a novel criterion, based on a model-matching approach, which improves autofocusing by also taking the underlying reconstruction algorithm, the forward model and the measured hologram into account. We derive a common autofocusing framework, based on a recent phase-retrieval approach and a downhill-simplex method for the automatic optimization of the Fresnel number. We further demonstrate the robustness of the framework on different data sets obtained at the nano imaging endstation of P05 at PETRA III (DESY, Hamburg) operated by Helmholtz-Zentrum Hereon.