Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[183663]
Title: The pitfalls of receive path calibration.
Written by: F. Thieben, T. Knopp, M. Boberg, F. Foerger, M. Graeser, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging IJMPI</em>. mar (2023).
Volume: <strong>9</strong>. Number: (1 Suppl 1),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/606
ARXIVID:
PMID:

[www]

Note: inproceedings, instrumentation

Abstract: In Magnetic Particle Imaging (MPI) and magnetic particle spectroscopy (MPS) magnetic nanoparticles (MNPs) are exposed to static and dynamic fields. These cause a dynamic magnetization response that is typically measured with inductive coils. The signal acquisition generally occurs in parallel with the excitation. This has the consequence that the excitation field couples into each receive path. The feed-through signal is commonly dampened by advanced passive filtering, at the cost of a distorted particle signal. Consequently, the measurement signals of different MPI or MPS devices will differ, even if the underlying magnetization response of the MNPs is the same. Receive path calibration can be used to address this issue by reverting these distortions and transforming the signal into a device independent domain. The authors of this abstract studied a general calibration procedure for multi-channel, non-orthogonal and non-homogeneous receive coils along with an analytical calibration model. Furthermore, method and model uncertainties were investigated and a systematic model error that had not been accounted for in previous calibration methods has been identified. This systematic model error could be attributed to the approximation of the mutual inductance between receive and calibration coil and it becomes non-negligible in experimental setups with small inductive receivers. Suggestionswere made for estimating and reducing its influence. Finally, the method was used to calibrate the receive path of an MPS system and of a multi-channel, non-orthogonal MPI receive coil setup.