Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[191087]
Title: System Characterization of a Human-Sized 3D Real-Time Magnetic Particle Imaging Scanner for Cerebral Applications.
Written by: F. Thieben, F. Foerger, F. Mohn, N. Hackelberg, M. Boberg, J.-P. Scheel, Möddel, M. Graeser, and T. Knopp
in: <em>Communications Engineering</em>. (2024).
Volume: <strong>3</strong>. Number: (1),
on pages: 47
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s44172-024-00192-6
URL:
ARXIVID:
PMID:

Note: article, openaccess, brainimager

Abstract: Abstract Since the initial patent in 2001, the Magnetic Particle Imaging community has endeavored to develop a human-applicable Magnetic Particle Imaging scanner, incorporating contributions from various research fields. Here we present an improved head-sized Magnetic Particle Imaging scanner with low power consumption, operated by open-source software and characterize it with an emphasis on human safety. The focus is on the evaluation of the technical components and on phantom experiments for brain perfusion. We achieved 3D single- and multi-contrast imaging at 4 Hz frame rate. The system characterization includes sensitivity, resolution, perfusion and multi-contrast experiments as well as field measurements and sequence analysis. Images were acquired with a clinically approved tracer and within human peripheral nerve stimulation thresholds. This advanced scanner holds potential as a tomographic imager for diagnosing conditions such as ischemic stroke (different stages) or intracranial hemorrhage in environments lacking electromagnetic shielding, such as the intensive care unit.