Niklas Hackelberg, M.Sc.

Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE
Mönkhofer Weg 239a
23562 Lübeck
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

E-Mail: niklas.hackelberg(at)imte.fraunhofer.de
E-Mail: niklas.hackelberg(at)tuhh.de
ORCID: https://orcid.org/0000-0002-0976-9049

Research Interests

  • Magnetic Particle Imaging
  • Image reconstruction in MPI, MRI and CT
  • Parallel computing in Julia

Curriculum Vitae

Niklas Hackelberg is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. In addition, he works as a software engineer at the Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE in Lübeck. He studied Computer Science at the Technical University of Hamburg from 2014 to 2021, where he earned his Master's degree with a thesis on "Development of a Scalable and Real-Time Capable Data Acquisition System for Magnetic Particle Imaging."  

Journal Publications

[191087]
Title: System Characterization of a Human-Sized 3D Real-Time Magnetic Particle Imaging Scanner for Cerebral Applications.
Written by: F. Thieben, F. Foerger, F. Mohn, N. Hackelberg, M. Boberg, J.-P. Scheel, Möddel, M. Graeser, and T. Knopp
in: <em>Communications Engineering</em>. (2024).
Volume: <strong>3</strong>. Number: (1),
on pages: 47
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s44172-024-00192-6
URL:
ARXIVID:
PMID:

Note: article, openaccess, brainimager

Abstract: Abstract Since the initial patent in 2001, the Magnetic Particle Imaging community has endeavored to develop a human-applicable Magnetic Particle Imaging scanner, incorporating contributions from various research fields. Here we present an improved head-sized Magnetic Particle Imaging scanner with low power consumption, operated by open-source software and characterize it with an emphasis on human safety. The focus is on the evaluation of the technical components and on phantom experiments for brain perfusion. We achieved 3D single- and multi-contrast imaging at 4 Hz frame rate. The system characterization includes sensitivity, resolution, perfusion and multi-contrast experiments as well as field measurements and sequence analysis. Images were acquired with a clinically approved tracer and within human peripheral nerve stimulation thresholds. This advanced scanner holds potential as a tomographic imager for diagnosing conditions such as ischemic stroke (different stages) or intracranial hemorrhage in environments lacking electromagnetic shielding, such as the intensive care unit.

Conference Proceedings

[191087]
Title: System Characterization of a Human-Sized 3D Real-Time Magnetic Particle Imaging Scanner for Cerebral Applications.
Written by: F. Thieben, F. Foerger, F. Mohn, N. Hackelberg, M. Boberg, J.-P. Scheel, Möddel, M. Graeser, and T. Knopp
in: <em>Communications Engineering</em>. (2024).
Volume: <strong>3</strong>. Number: (1),
on pages: 47
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s44172-024-00192-6
URL:
ARXIVID:
PMID:

Note: article, openaccess, brainimager

Abstract: Abstract Since the initial patent in 2001, the Magnetic Particle Imaging community has endeavored to develop a human-applicable Magnetic Particle Imaging scanner, incorporating contributions from various research fields. Here we present an improved head-sized Magnetic Particle Imaging scanner with low power consumption, operated by open-source software and characterize it with an emphasis on human safety. The focus is on the evaluation of the technical components and on phantom experiments for brain perfusion. We achieved 3D single- and multi-contrast imaging at 4 Hz frame rate. The system characterization includes sensitivity, resolution, perfusion and multi-contrast experiments as well as field measurements and sequence analysis. Images were acquired with a clinically approved tracer and within human peripheral nerve stimulation thresholds. This advanced scanner holds potential as a tomographic imager for diagnosing conditions such as ischemic stroke (different stages) or intracranial hemorrhage in environments lacking electromagnetic shielding, such as the intensive care unit.