Dr.-Ing. Matthias Gräser

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25812
E-Mail: matthias.graeser(at)tuhh.de
E-Mail: ma.graeser(at)uke.de

Research Interests

  • Magnetic Particle Imaging
  • Low Noise Electronics
  • Inductive Sensors
  • Passive Electrical Devices

Curriculum Vitae

Matthias Gräser submitted his Dr.-Ing. thesis in january 2016 at the institute of medical engineering (IMT) at the university of Lübeck and is now working as a Research Scientist at the institute for biomedical imaging (IBI) at the technical university in Hamburg, Germany.  Here he develops concepts for Magnetic-Particle-Imaging (MPI) devices. His main aim is to improve the sensitivity of the imageing devices and improve resolution and application possibilities of MPI technology.

In 2011 Matthias Gräser started to work at the IMT as a Research Associate in the Magnetic Particle Imaging Technology (MAPIT) project. In this project he devolped the analog signal chains for a rabbit sized field free line imager. Additionally he developed a two-dimensional Magnetic-Particle-Spectrometer. This device can apply various field sequences and measure the particle response with a very high signal-to-noise ratio (SNR).

The dynamic behaviour of magnetic nanoparticles is still not fully understood. Matthias Gräser investigated the particle behaviour by modeling the particle behaviour with stochastic differential equations. With this model it is possible to simulate the impact of several particle parameters and field sequences on the particle response .

In 2010 Matthias Gräser finished his diploma at the Karlsruhe Institue of Technology (KIT). His diploma thesis investigated the nerve stimulation of magnetic fields in the range from 4 kHz to 25 kHz.

Journal Publications

Journal Publications

[180977]
Title: MPI Transfer-Function Estimation with Receive-Coil Coupling.
Written by: M. Boberg, J. Hunecke, F. Thieben, M. Graeser, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2023).
Volume: <strong>9</strong>. Number: (1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303053
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/588
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings

Abstract: Time- and memory-consuming calibration measurements are a major drawback in system-matrix-based reconstructions in magnetic particle imaging (MPI). Especially, exchanging the receive coils requires new system matrices and therefore new calibration measurements. To reduce the number of such measurements, the MPI transfer function can be used to transfer the system matrix of one receive coil set to another. The transfer function can be obtained by a direct measurement or by estimation using a measured system matrix of each setup. In this abstract, we extend the latter to incorporate coupling of the receive coils while using only a few voxels of the system matrices. In this way, we can transfer system matrices between two different receive setups, both of which may contain non-orthogonal coils.

Conference Proceedings

Conference Proceedings

[180977]
Title: MPI Transfer-Function Estimation with Receive-Coil Coupling.
Written by: M. Boberg, J. Hunecke, F. Thieben, M. Graeser, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2023).
Volume: <strong>9</strong>. Number: (1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303053
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/588
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings

Abstract: Time- and memory-consuming calibration measurements are a major drawback in system-matrix-based reconstructions in magnetic particle imaging (MPI). Especially, exchanging the receive coils requires new system matrices and therefore new calibration measurements. To reduce the number of such measurements, the MPI transfer function can be used to transfer the system matrix of one receive coil set to another. The transfer function can be obtained by a direct measurement or by estimation using a measured system matrix of each setup. In this abstract, we extend the latter to incorporate coupling of the receive coils while using only a few voxels of the system matrices. In this way, we can transfer system matrices between two different receive setups, both of which may contain non-orthogonal coils.