[120376] |
Title: Determining the Relation between Iron Mass and Spatial Resolution for a Human-Sized Magnetic Particle Brain Imager. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Thieben, M. Graeser, M. Boberg, P. Szwargulski, M. Möddel, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 41-42 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is an important issue for the diagnosis of vascular diseases. Since the total iron dose is limited, the ability to measure and resolve low iron concentrations is of great interest. In this work, we investigated the relation between decreasing iron mass and spatial resolution for a human-sized MPI brain imager. We find the full-width at half maximum of a small delta sample to be a good initial measure for the spatial resolution. In our experiments, the achievable resolution showed only slight decrease over one decade of iron mass.
[120376] |
Title: Determining the Relation between Iron Mass and Spatial Resolution for a Human-Sized Magnetic Particle Brain Imager. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Thieben, M. Graeser, M. Boberg, P. Szwargulski, M. Möddel, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 41-42 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is an important issue for the diagnosis of vascular diseases. Since the total iron dose is limited, the ability to measure and resolve low iron concentrations is of great interest. In this work, we investigated the relation between decreasing iron mass and spatial resolution for a human-sized MPI brain imager. We find the full-width at half maximum of a small delta sample to be a good initial measure for the spatial resolution. In our experiments, the achievable resolution showed only slight decrease over one decade of iron mass.
[120376] |
Title: Determining the Relation between Iron Mass and Spatial Resolution for a Human-Sized Magnetic Particle Brain Imager. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Thieben, M. Graeser, M. Boberg, P. Szwargulski, M. Möddel, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 41-42 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is an important issue for the diagnosis of vascular diseases. Since the total iron dose is limited, the ability to measure and resolve low iron concentrations is of great interest. In this work, we investigated the relation between decreasing iron mass and spatial resolution for a human-sized MPI brain imager. We find the full-width at half maximum of a small delta sample to be a good initial measure for the spatial resolution. In our experiments, the achievable resolution showed only slight decrease over one decade of iron mass.
[120376] |
Title: Determining the Relation between Iron Mass and Spatial Resolution for a Human-Sized Magnetic Particle Brain Imager. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: F. Thieben, M. Graeser, M. Boberg, P. Szwargulski, M. Möddel, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 41-42 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: The determination of brain perfusion is an important issue for the diagnosis of vascular diseases. Since the total iron dose is limited, the ability to measure and resolve low iron concentrations is of great interest. In this work, we investigated the relation between decreasing iron mass and spatial resolution for a human-sized MPI brain imager. We find the full-width at half maximum of a small delta sample to be a good initial measure for the spatial resolution. In our experiments, the achievable resolution showed only slight decrease over one decade of iron mass.