[120374] |
Title: First human-sized Magnetic Particle Imaging Device for Cerebral Applications. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 15-16 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: In intensive care units, patients suffering from intracerebral hemorrhage or ischemic stroke cannot be monitored by imaging systems due to the demands of the scanning device like shielded rooms. In this work, we present the first MPI human head scanner, which can operate in unshielded environments. It is compact and flexible and can be integrated further to be a mobile, bedside device. The system demonstrates its capabilities in technical tests as well as on human sized phantoms.
[120374] |
Title: First human-sized Magnetic Particle Imaging Device for Cerebral Applications. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 15-16 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: In intensive care units, patients suffering from intracerebral hemorrhage or ischemic stroke cannot be monitored by imaging systems due to the demands of the scanning device like shielded rooms. In this work, we present the first MPI human head scanner, which can operate in unshielded environments. It is compact and flexible and can be integrated further to be a mobile, bedside device. The system demonstrates its capabilities in technical tests as well as on human sized phantoms.
[120374] |
Title: First human-sized Magnetic Particle Imaging Device for Cerebral Applications. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 15-16 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: In intensive care units, patients suffering from intracerebral hemorrhage or ischemic stroke cannot be monitored by imaging systems due to the demands of the scanning device like shielded rooms. In this work, we present the first MPI human head scanner, which can operate in unshielded environments. It is compact and flexible and can be integrated further to be a mobile, bedside device. The system demonstrates its capabilities in technical tests as well as on human sized phantoms.
[120374] |
Title: First human-sized Magnetic Particle Imaging Device for Cerebral Applications. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em> |
Written by: M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp |
in: (2019). |
Volume: Number: |
on pages: 15-16 |
Chapter: |
Editor: |
Publisher: |
Series: |
Address: |
Edition: |
ISBN: |
how published: |
Organization: |
School: |
Institution: |
Type: |
DOI: |
URL: |
ARXIVID: |
PMID: |
Note: inproceedings, brainimager
Abstract: In intensive care units, patients suffering from intracerebral hemorrhage or ischemic stroke cannot be monitored by imaging systems due to the demands of the scanning device like shielded rooms. In this work, we present the first MPI human head scanner, which can operate in unshielded environments. It is compact and flexible and can be integrated further to be a mobile, bedside device. The system demonstrates its capabilities in technical tests as well as on human sized phantoms.