Dr. rer. nat. Martin Möddel (Hofmann)

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: martin.moeddel(at)tuhh.de
E-Mail: m.hofmann(at)uke.de
ORCID: https://orcid.org/0000-0002-4737-7863

Research Interests

My research on tomographic imaging is primarily focused on magnetic particle imaging. In this context, I am engaged in the study of a number of problems, including:

  • Image reconstruction
    • Multi-contrast imaging
    • Multi-patch imaging
    • Artifact reduction
  • Magnetic field generation and characterisation
  • Receive path calibration

Curriculum Vitae

Martin Möddel is a postdoctoral researcher in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. He received his PhD in physics from the Universität Siegen in 2014 on the topic of characterizing quantum correlations: the genuine multiparticle negativity as entanglement monotone. Prior to his PhD, he studied physics at the Universität Leipzig between 2005 and 2011, where he received his Diplom On the costratified Hilbert space structure of a lattice gauge model with semi-simple gauge group.

Journal Publications

[191958]
Title: Power-Efficient Control of Non-LinearMagnetic Field Generators for MPI.
Written by: P. Suskin, F. Foerger, P. Jürß, M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503023
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/903
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.

[191958]
Title: Power-Efficient Control of Non-LinearMagnetic Field Generators for MPI.
Written by: P. Suskin, F. Foerger, P. Jürß, M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503023
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/903
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.

Conference Proceedings

[191958]
Title: Power-Efficient Control of Non-LinearMagnetic Field Generators for MPI.
Written by: P. Suskin, F. Foerger, P. Jürß, M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503023
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/903
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.

[191958]
Title: Power-Efficient Control of Non-LinearMagnetic Field Generators for MPI.
Written by: P. Suskin, F. Foerger, P. Jürß, M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503023
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/903
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.