Marija Boberg, M. Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 213
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25813
E-Mail: m.boberg(at)uke.de
E-Mail: marija.boberg(at)tuhh.de
ORCID: https://orcid.org/0000-0003-3419-7481

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Magnetic Fields

Curriculum Vitae

Marija Boberg studied mathematics at the University of Paderborn between 2011 and 2017. She received her master's degree with her thesis on "Analyse von impliziten Lösern für Differential-Algebraische Gleichungssysteme unter Verwendung von Algorithmischem Differenzieren". Currently, she is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[145074]
Title: Gradient power reducing using pulsed selection-field sequences.
Written by: F. Thieben, M. Boberg, P. Szwargulski, M. Graeser, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009054
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/268
ARXIVID:
PMID:

[www]

Note: inproceedings, brainimager

Abstract: Large selection-field power is required to generate a sufficient gradient strength in Magnetic Particle Imaging (MPI). Without cooling, the subsequent heat generation can limit the maximum experiment time. For commercially available MPI scanners a lot of effort was put into active cooling requiring space and infrastructure to dissipate heat. In this abstract, a promising power handling for the selection-field generation is presented. Using a pulsed instead of a continuous selection-field the gradient strength can be increased and no active cooling is required.

Conference Proceedings

[145074]
Title: Gradient power reducing using pulsed selection-field sequences.
Written by: F. Thieben, M. Boberg, P. Szwargulski, M. Graeser, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2020).
Volume: <strong>6</strong>. Number: (2),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2020.2009054
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/268
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, brainimager

Abstract: Large selection-field power is required to generate a sufficient gradient strength in Magnetic Particle Imaging (MPI). Without cooling, the subsequent heat generation can limit the maximum experiment time. For commercially available MPI scanners a lot of effort was put into active cooling requiring space and infrastructure to dissipate heat. In this abstract, a promising power handling for the selection-field generation is presented. Using a pulsed instead of a continuous selection-field the gradient strength can be increased and no active cooling is required.