Marija Boberg, M. Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 213
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25813
E-Mail: m.boberg(at)uke.de
E-Mail: marija.boberg(at)tuhh.de
ORCID: https://orcid.org/0000-0003-3419-7481

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Magnetic Fields

Curriculum Vitae

Marija Boberg studied mathematics at the University of Paderborn between 2011 and 2017. She received her master's degree with her thesis on "Analyse von impliziten Lösern für Differential-Algebraische Gleichungssysteme unter Verwendung von Algorithmischem Differenzieren". Currently, she is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[178617]
Title: Joint multi-patch reconstruction: fast and improved results by stochastic optimization.
Written by: L. Zdun, M. Boberg, and C. Brandt
in: <em>International Journal on Magnetic Particle Imaging</em>. (2022).
Volume: <strong>8</strong>. Number: (2),
on pages: 1-8
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2022.2212002
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/477
ARXIVID:
PMID:

[www]

Note: article, multi-patch, artifact, openaccess

Abstract: In order to measure larger volumes in magnetic particle imaging, it is necessary to divide the region of interest into several patches and measure those patches individually due to a limited size of the field of view. This procedure yields truncation artifacts at the patches boundaries during reconstruction. Applying a regularization which takes into account neighbourhood structures not only on one patch but across all patches can significantly reduce those artifacts. However, the current state-of-the-art reconstruction method using the Kaczmarz algorithm is limited to Tikhonov regularization. We thus propose to use the stochastic primal-dual hybrid gradient method to solve the multi-patch reconstruction task. Our experiments show that the quality of our reconstructions is significantly higher than those obtained by Tikhonov regularization and Kaczmarz method. Moreover, using our proposed method, a joint reconstruction considerably reduces the computational costs compared to multiple single-patch reconstructions. The algorithm proposed is thus competitive to the current state-of-the-art method not only regarding reconstruction quality but also concerning the computational effort.

Conference Proceedings

[178617]
Title: Joint multi-patch reconstruction: fast and improved results by stochastic optimization.
Written by: L. Zdun, M. Boberg, and C. Brandt
in: <em>International Journal on Magnetic Particle Imaging</em>. (2022).
Volume: <strong>8</strong>. Number: (2),
on pages: 1-8
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2022.2212002
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/477
ARXIVID:
PMID:

[www] [BibTex]

Note: article, multi-patch, artifact, openaccess

Abstract: In order to measure larger volumes in magnetic particle imaging, it is necessary to divide the region of interest into several patches and measure those patches individually due to a limited size of the field of view. This procedure yields truncation artifacts at the patches boundaries during reconstruction. Applying a regularization which takes into account neighbourhood structures not only on one patch but across all patches can significantly reduce those artifacts. However, the current state-of-the-art reconstruction method using the Kaczmarz algorithm is limited to Tikhonov regularization. We thus propose to use the stochastic primal-dual hybrid gradient method to solve the multi-patch reconstruction task. Our experiments show that the quality of our reconstructions is significantly higher than those obtained by Tikhonov regularization and Kaczmarz method. Moreover, using our proposed method, a joint reconstruction considerably reduces the computational costs compared to multiple single-patch reconstructions. The algorithm proposed is thus competitive to the current state-of-the-art method not only regarding reconstruction quality but also concerning the computational effort.