Marija Boberg, M. Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 213
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25813
E-Mail: m.boberg(at)uke.de
E-Mail: marija.boberg(at)tuhh.de
ORCID: https://orcid.org/0000-0003-3419-7481

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Magnetic Fields

Curriculum Vitae

Marija Boberg studied mathematics at the University of Paderborn between 2011 and 2017. She received her master's degree with her thesis on "Analyse von impliziten Lösern für Differential-Algebraische Gleichungssysteme unter Verwendung von Algorithmischem Differenzieren". Currently, she is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[191962]
Title: TrainingPhantoms.jl: Simple and Versatile Image Phantom Generation.
Written by: P. Jürß, C. Droigk, M. Boberg, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503031
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/802
ARXIVID:
PMID:

[www]

Note: inproceedings, opensoftware, generalsoftware

Abstract: Large collections of labeled data play a crucial role in supervised machine learning projects. Unfortunately, such datasets are quite rare in the medical domain. In this work, the Julia project TrainingPhantoms.jl is introduced, which provides a simple interface to generate large and diverse collections of randomly generated image phantoms. The proposed phantom generator has been successfully used to train an image quality enhancement network that managed to generalize to unseen experimental out-of-distribution data.

Conference Proceedings

[191962]
Title: TrainingPhantoms.jl: Simple and Versatile Image Phantom Generation.
Written by: P. Jürß, C. Droigk, M. Boberg, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. Mar (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503031
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/802
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, opensoftware, generalsoftware

Abstract: Large collections of labeled data play a crucial role in supervised machine learning projects. Unfortunately, such datasets are quite rare in the medical domain. In this work, the Julia project TrainingPhantoms.jl is introduced, which provides a simple interface to generate large and diverse collections of randomly generated image phantoms. The proposed phantom generator has been successfully used to train an image quality enhancement network that managed to generalize to unseen experimental out-of-distribution data.