Marija Boberg, M. Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 213
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25813
E-Mail: m.boberg(at)uke.de
E-Mail: marija.boberg(at)tuhh.de
ORCID: https://orcid.org/0000-0003-3419-7481

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Magnetic Fields

Curriculum Vitae

Marija Boberg studied mathematics at the University of Paderborn between 2011 and 2017. She received her master's degree with her thesis on "Analyse von impliziten Lösern für Differential-Algebraische Gleichungssysteme unter Verwendung von Algorithmischem Differenzieren". Currently, she is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[191958]
Title: Power-Efficient Control of Non-LinearMagnetic Field Generators for MPI.
Written by: P. Suskin, F. Foerger, P. Jürß, M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503023
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/903
ARXIVID:
PMID:

[www]

Note: inproceedings, magneticfield, ml

Abstract: The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.

Conference Proceedings

[191958]
Title: Power-Efficient Control of Non-LinearMagnetic Field Generators for MPI.
Written by: P. Suskin, F. Foerger, P. Jürß, M. Boberg, T. Knopp, and M. Möddel
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503023
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/903
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, magneticfield, ml

Abstract: The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.