Florian Thieben, M.Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 202
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56355
E-Mail: f.thieben(at)uke.de
E-Mail: florian.thieben(at)tuhh.de
ORCID: https://orcid.org/0000-0002-2890-5288

Research Interests

  • Magnetic Particle Imaging
  • Low noise electronics
  • Inductive sensors and filters
  • Magnetic Particle Imaging scanner characterization

Curriculum Vitae

Florian Thieben works as an electrical engineer in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. In 2017 he graduated with a master's degree thesis on Entwicklung eines kompakten Magnet Partikel Spektrometers mit gradiometrischer Empfangskette".

Journal Publications

[191087]
Title: System Characterization of a Human-Sized 3D Real-Time Magnetic Particle Imaging Scanner for Cerebral Applications.
Written by: F. Thieben, F. Foerger, F. Mohn, N. Hackelberg, M. Boberg, J.-P. Scheel, Möddel, M. Graeser, and T. Knopp
in: <em>Communications Engineering</em>. (2024).
Volume: <strong>3</strong>. Number: (1),
on pages: 47
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s44172-024-00192-6
URL:
ARXIVID:
PMID:

Note: article, openaccess, brainimager

Abstract: Abstract Since the initial patent in 2001, the Magnetic Particle Imaging community has endeavored to develop a human-applicable Magnetic Particle Imaging scanner, incorporating contributions from various research fields. Here we present an improved head-sized Magnetic Particle Imaging scanner with low power consumption, operated by open-source software and characterize it with an emphasis on human safety. The focus is on the evaluation of the technical components and on phantom experiments for brain perfusion. We achieved 3D single- and multi-contrast imaging at 4 Hz frame rate. The system characterization includes sensitivity, resolution, perfusion and multi-contrast experiments as well as field measurements and sequence analysis. Images were acquired with a clinically approved tracer and within human peripheral nerve stimulation thresholds. This advanced scanner holds potential as a tomographic imager for diagnosing conditions such as ischemic stroke (different stages) or intracranial hemorrhage in environments lacking electromagnetic shielding, such as the intensive care unit.

Conference Proceedings

[191087]
Title: System Characterization of a Human-Sized 3D Real-Time Magnetic Particle Imaging Scanner for Cerebral Applications.
Written by: F. Thieben, F. Foerger, F. Mohn, N. Hackelberg, M. Boberg, J.-P. Scheel, Möddel, M. Graeser, and T. Knopp
in: <em>Communications Engineering</em>. (2024).
Volume: <strong>3</strong>. Number: (1),
on pages: 47
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s44172-024-00192-6
URL:
ARXIVID:
PMID:

[BibTex]

Note: article, openaccess, brainimager

Abstract: Abstract Since the initial patent in 2001, the Magnetic Particle Imaging community has endeavored to develop a human-applicable Magnetic Particle Imaging scanner, incorporating contributions from various research fields. Here we present an improved head-sized Magnetic Particle Imaging scanner with low power consumption, operated by open-source software and characterize it with an emphasis on human safety. The focus is on the evaluation of the technical components and on phantom experiments for brain perfusion. We achieved 3D single- and multi-contrast imaging at 4 Hz frame rate. The system characterization includes sensitivity, resolution, perfusion and multi-contrast experiments as well as field measurements and sequence analysis. Images were acquired with a clinically approved tracer and within human peripheral nerve stimulation thresholds. This advanced scanner holds potential as a tomographic imager for diagnosing conditions such as ischemic stroke (different stages) or intracranial hemorrhage in environments lacking electromagnetic shielding, such as the intensive care unit.