Fabian Mohn, M.Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 203
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25812
E-Mail: f.mohn(at)uke.de
E-Mail: fabian.mohn(at)tuhh.de
ORCID:  https://orcid.org/0000-0002-9151-9929

Research Interests

  • (arbitrary waveform) Magnetic Particle Imaging
  • inductive sensors, filters and resonant transformers
  • circuit design, impedance matching
  • applications in Magnetic Particle Imaging

Curriculum Vitae

Fabian Mohn studied Electrical Engineering at the Hamburg University of Technology (TUHH) and he joined the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf (UKE) and the Hamburg University of Technology in 2020 as a PhD student. Working at Philips Research Laboratories Hamburg, he received his master's degree in 2018 on the Analysis and Optimization of the Signal-to-Noise Ratio for Receive Arrays in Magnetic Resonance Imaging.

Journal Publications

[183661]
Title: Saline bolus for negative contrast perfusion imaging in magnetic particle imaging.
Written by: F. Mohn, M. Exner, P. Szwargulski, M. Möddel, T. Knopp, and M. Graeser
in: <em>Physics in Medicine & Biology</em>. aug (2023).
Volume: <strong>68</strong>. Number: (17),
on pages: 5026
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN: 0031-9155, 1361-6560
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6560/ace309
URL:
ARXIVID:
PMID:

Note: article, openaccess

Abstract: Magnetic Particle Imaging is capable to measure the spatial distribution of magnetic nanoparticles with high temporal resolution. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs, which are an important tool in medical diagnosis. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background. We propose a method, where a bolus of physiological saline solution without any particles (negative contrast) displaces the remaining steady state concentration which in turn contributes to the image contrast. Perfusion parameters are calculated based on the time response of this negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low. Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.

Conference Proceedings

[183661]
Title: Saline bolus for negative contrast perfusion imaging in magnetic particle imaging.
Written by: F. Mohn, M. Exner, P. Szwargulski, M. Möddel, T. Knopp, and M. Graeser
in: <em>Physics in Medicine & Biology</em>. aug (2023).
Volume: <strong>68</strong>. Number: (17),
on pages: 5026
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN: 0031-9155, 1361-6560
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6560/ace309
URL:
ARXIVID:
PMID:

[BibTex]

Note: article, openaccess

Abstract: Magnetic Particle Imaging is capable to measure the spatial distribution of magnetic nanoparticles with high temporal resolution. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs, which are an important tool in medical diagnosis. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background. We propose a method, where a bolus of physiological saline solution without any particles (negative contrast) displaces the remaining steady state concentration which in turn contributes to the image contrast. Perfusion parameters are calculated based on the time response of this negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low. Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.