Open Access Publications

The Institute's work is published in both traditional journals (e.g. the prestigious imaging journal IEEE Transactions on Medical Imaging) and open access journals. For traditional journals, a preprint is uploaded to ArXiv whenever possible to make the research results freely available.

In addition, Tobias Knopp, as Editor-in-Chief, has founded a new scientific Open Access journal, which makes all articles available under the Creative Commons License (CC-BY-4.0). The International Journal on MagneticParticle Imaging (IJMPI) was founded in 2015 and publishes new research developments within the MPI community.

Open Access Publications

[191665]
Title: Equilibrium Model With Anisotropy for Model-Based Reconstruction in Magnetic Particle Imaging.
Written by: M. Maass, T. Kluth, C. Droigk, H. Albers, K. Scheffler, A. Mertins, and T. Knopp
in: <em>IEEE Transactions on Computational Imaging</em>. November (2024).
Volume: <strong>10</strong>. Number:
on pages: 1588 - 1601
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TCI.2024.3490381
URL:
ARXIVID:
PMID:

Note: article, openaccess, model-based

Abstract: Magnetic particle imaging is a tracer-based tomographic imaging technique that allows the concentration of magnetic nanoparticles to be determined with high spatio-temporal resolution. To reconstruct an image of the tracer concentration, the magnetization dynamics of the particles must be accurately modeled. A popular ensemble model is based on solving the Fokker-Plank equation, taking into account either Brownian or Néel dynamics. The disadvantage of this model is that it is computationally expensive due to an underlying stiff differential equation. A simplified model is the equilibrium model, which can be evaluated directly but in most relevant cases it suffers from a non-negligible modeling error. In the present work, we investigate an extended version of the equilibrium model that can account for particle anisotropy. We show that this model can be expressed as a series of Bessel functions, which can be truncated based on a predefined accuracy, leading to very short computation times, which are about three orders of magnitude lower than equivalent Fokker-Planck computation times. We investigate the accuracy of the model for 2D Lissajous magnetic particle imaging sequences and show that the difference between the Fokker-Planck and the equilibrium model with anisotropy is sufficiently small so that the latter model can be used for image reconstruction on experimental data with only marginal loss of image quality, even compared to a system matrix-based reconstruction.