Open Access Publications

The Institute's work is published in both traditional journals (e.g. the prestigious imaging journal IEEE Transactions on Medical Imaging) and open access journals. For traditional journals, a preprint is uploaded to ArXiv whenever possible to make the research results freely available.

In addition, Tobias Knopp, as Editor-in-Chief, has founded a new scientific Open Access journal, which makes all articles available under the Creative Commons License (CC-BY-4.0). The International Journal on MagneticParticle Imaging (IJMPI) was founded in 2015 and publishes new research developments within the MPI community.

Open Access Publications

[178600]
Title: Extrapolation of System Matrices in Magnetic Particle Imaging.
Written by: K. Scheffler, M. Boberg, and T. Knopp
in: <em>IEEE Transactions on Medical Imaging</em>. April (2023).
Volume: <strong>42</strong>. Number: (4),
on pages: 1121 - 1132
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TMI.2022.3224310
URL:
ARXIVID:
PMID:

[pdf]

Note: article, multi-patch, artifact, openaccess

Abstract: Magnetic particle imaging exploits the non-linear magnetization of superparamagnetic iron-oxide particles to generate a tomographic image in a defined field-of-view. For reconstruction of the particle distribution, a time-consuming calibration step is required, in which system matrices get measured using a robot. To achieve artifact-free images, system matrices need to cover not only the field-of-view but also a larger area around it. Especially for large measurements – inevitable for future clinical application – this leads to long calibration time and high consumption of persistent memory. In this work, we analyze the signal in the outer part of the system matrix and motivate the usage of extrapolation methods to computationally expand the system matrix after restricting the calibration to the field-of-view. We propose a suitable extrapolation method and show its applicability on measured 2D and 3D data. In doing so, we achieve a considerable reduction of calibration time and consumption of persistent memory while preserving an artifact-free result.