This research project is concerned with ship and offshore plant safety, and focuses on problems that can arise in the context of offshore wind turbines (OWT) in the Baltic and North Seas. Safety problems in connection with ships can occur during the installation, operation, maintenance and decomposition phases of offshore plants. While these safety problems may involve various scenarios, the physical reasons will have a high level of similarity. A deep understanding of the physical phenomena and the interdisciplinary development of the simulation models in the numerical methods is crucial in generating efficient technical solutions for safety issues without disproportionally increasing project costs or time.
The aim of this research project is to support the wind energy industry as well as national and international organisations by providing numerical methods in an effort to increase ship and offshore plant safety, to reduce the risks for humans, and to decrease the danger for environmental damage.
The research project focuses on computational strategies devoted to the prognosis of accident event sequences and possible consequences from resulting damages. A database for capsizing and sinking accidents with ships will be developed in order to provide test cases for other research projects and to validate numerical methods currently under development. These methods can be applied to analyse accident scenarios and to improve the safety performance of new ships and offshore plant designs. The evaluation of numerical results can also be used to define various categories of preventive and operational measures that can decrease the likelihood of accidents as well as damages and their consequences. Preventive measures would change the design characteristics in such a way that a particular problem would not arise and/or would have less serious consequences. Operational measures would reduce the consequences of an accident. These measures can be implemented during an accident in order to decrease its magnitude and to minimize the consequences; for example, the development of evacuation plans depending on the extent of the damage incurred.
A special feature of the planned numerical investigations is the simultaneous consideration of complex interaction between different phenomena. Examples included refer to the change in hydrostatic behaviour of offshore plants during installation, ship collision, global failure of ship structure due to local failure, and flooding simulation in rough seas under the influence of limited manoeuvring capabilities caused by damages of control devices in heavy weather conditions.
Six work packages (WP) on numerical simulation of dynamic ship and OWT behaviour in critical safety situations are included in the research program. A short summary of the six work packages is given below.