New publication by Patrick Huber's research group in PNAS:
Capillarity-driven flows in nanometer-sized pores play a dominant role in many natural and technological processes, ranging from water transport and transpiration in trees, clay swelling, and catalysis to transport through microfluidic structures and fabrication of battery materials. Here, we show by a combination of experiments and computer simulations of water imbibition in nanopores that the competition between expansive, surface stress release at pore walls and negative, contractile Laplace pressures of nanoscale menisci lead to an unusual macroscopic behavior of the porous medium, which is generic for any liquid/nanoporous solid combination. The results allow one to quantify surface and Laplace stresses and to monitor nanoscale flow and infiltration states by relatively simple length measurements of the porous medium. See also DESY press release.