current projects


Building Block Based Automatic Process Synthesis for Intensified Separation Processes (B³APSI)

This project aims to develop a new approach to the synthesis and design of thermal separation processes, which can be highly energy-intensive, especially in the case of distillation-based separation processes. By focusing on process intensification and process systems engineering, we seek to develop an integrated framework based on superstructure models connecting phenomena building blocks and an automatic code generation procedure. Using state-of-the-art optimization techniques, the project will facilitate innovative process designs that incorporate thermally coupled dividing wall columns, heat-integrated distillation processes, and hybrid configurations. These integrations promise significant reductions in energy consumption and emissions by overcoming existing process design barriers. The strategic use of a platform-independent meta-language for code generation ensures adaptability and flexibility.

Cooperation partner: Chair of Process Dynamics and Operations, Institute of Chemical and Process Engineering, TU Berlin

Funded by: Deutsche Forschungsgemeinschaft since 2023

Systematic Multiscale Modeling and Design Concept for SMART Reactors

In this subproject B06 of the Collaborative Research Center SMART reactors, superstructure optimization approaches and Computational Fluid Dynamics (CFD) simulations will be used for multiscale optimization to maximize the potential of novel adaptive materials. Crucial in this context is the linkage between expensive high-resolution CFD models and systemic models accessible for direct mathematical optimization. The overarching goal of this project is the design of flexible SMART reactors with optimally controlled reaction conditions.

Cooperation partner: SFB Team

Funded by: Deutsche Forschungsgemeinschaft since 2023

SFB 1615 Website

Analysis of thermally coupled distillation sequences without vapor transfer (Liquid-Only-Transfer)

Liquid-only-transfer (LOT) sequences are an innovative adaptation of conventional thermally coupled distillation sequences. They are characterized by not requiring a vapor transfer stream between columns, making both design and operation simpler and more flexible. The goal of this project is to comprehensively analyze LOT sequences in a model-based and experimental manner to determine the potential of these sequences, validate the advantages, and generate process understanding.

 

Optimization of Structured Packings for Thermal Separation Columns

The aim of this project is the design of novel structured packings for thermal separation columns. The structure of the packing is mathematically optimized with regard to the expected performance based on the structured packing in gas-liquid contact with the aid of simulation calculations. In a further step, the designed packings are analyzed experimentally with respect to different performance parameters.

 

Automated synthesis of distillation-based processes for the separation of multi-component azeotropic mixtures

The aim of the research project is the development of an automatic generation of distillation-based processes, which is based solely on a thermodynamic description of the phase behavior of a multi-component mixture to be separated. Through a purely algorithmic derivation of alternative flowsheets, taking into account separation limits and pressure changes, automatic flowsheet generation is also made possible for azeotropic multi-component mixtures, which up to now have only been derived through complex simulation studies or the graphical analysis of concentration diagrams of ternary subsystems.

Cooperation partner: Lehrstuhl für Fluidverfahrenstechnik, TU Dortmund

Efficient evaluation of intensified distillation processes in the scope of plant-wide energy integration

In light of rising energy prices and in order to reduce the emission of greenhouse gases, it is essential to increase the efficiency of distillation processes. As such, this research project focuses on the evaluation of innovative energy-integrated distillation processes in terms of energetic, economic and environmental criteria in the context of a developing chemical industry. Depending on the specific separation task, different improvement measures such as thermal coupling, heat integration or the use of heat pumps can be considered in addition to various column configurations for separation into multiple fractions. Accordingly, the most efficient process alternative must be evaluated from a wide variety of options. To achieve this, shortcut screening based on rigorous thermodynamics is applied in conjunction with rigorous optimization.

 

Multienzymkaskade im 2-Phasensystem - Prozessintegration

Die Bedeutung der Biotechnologie in der chemischen Industrie nimmt kontinuierlich zu. Dies gilt insbesondere für komplexe Moleküle in der Feinchemie, bei denen Enzymkaskaden eine vielversprechende Lösung für selektive Synthesen bieten. Allerdings sind biochemische Prozesse im Vergleich zu herkömmlichen Verfahren eher langsam. Um dieser Herausforderung zu begegnen, kann eine Prozessintensivierung in Form von Prozessintegration hilfreich sein. In diesem Projekt wird erstmals eine dreiphasige (flüssig/flüssig/fest) reaktive Extraktionszentrifuge in Betrieb genommen. Durch die Integration einer enzymatischen Reaktion entsteht eine einzigartige enzymatische reaktive Extraktionszentrifuge.

Kooperationspartner: Institut für Technische Biokatalyse, TU Hamburg

Gefördert durch: Deutsche Forschungsgemeinschaft seit 2021

Entwicklung und experimentelle Validierung einer molekulardynamischen Simulationsmethode zur Vorausberechnung von Adsorptionsisothermen von Proteinen

Die Herstellung von Proteinen als Biopharmazeutika ist ein bedeutender und expandierender Bereich der pharmazeutischen Industrie. Gegenwärtig werden die Biopharmazeutika nach der fermentativen Herstellung durch verschiedene chromatographische Verfahren gereinigt. Die Entwicklung dieser Methoden erfordert jedoch aufwendige experimentelle Untersuchungen. In diesem Projekt werden experimentelle Methoden und molekulardynamische (MD) Simulationen eng miteinander kombiniert, um die Ionenaustauschadsorption von Biopharmazeutika zu charakterisieren, um die Entwicklungskosten des Downstreamprocessing zu senken.

Kooperationspartner: Institut für Thermische Verfahrenstechnik, TU HamburgInstitut für chemische Reaktionstechnik, TU Hamburg

Gefördert durch: Deutsche Forschungsgemeinschaft seit 2021