Dr.-Ing. Marko Hoffmann


Eißendorfer Str. 38

21073 Hamburg

Building O, Room 1.014

Phone +49 40 42878-3152

Mail Marko Hoffmann


Education
  • Construction and Apparatus Engineering
  • Fundamentals of Process Engineering and Material Engineering
  • Fundamentals of Technical Drawing
Publications
[191132]
Title: Characterization Data for the Establishment of Scale-Up and Process Transfer Strategies between Stainless Steel and Single-Use Bioreactors.
Written by: Bernemann, V.; Fitschen, J.; Leupold, M.; Scheibenbogen, K.-H.; Maly, M.; Hoffmann, M.; Wucherpfennig, T.; Schlüter, M.
in: <em>Fluids</em>. (2024).
Volume: <strong>9</strong>. Number: (5),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.3390/fluids9050115
URL: https://www.mdpi.com/2311-5521/9/5/115
ARXIVID:
PMID:

[www]

Note:

Abstract: The reliable transfer of bioprocesses from single-use bioreactors (SUBs) of different scales to conventional stainless steel stirred-tank bioreactors is of steadily growing interest. In this publication, a scale-up study for SUBs with volumes of 200 L and 2000 L and the transfer to an industrial-scale conventional stainless steel stirred-tank bioreactor with a volume of 15,000 L is presented. The scale-up and transfer are based on a comparison of mixing times and the modeling of volumetric mass transfer coefficients kLa, measured in all three reactors in aqueous PBS/Kolliphor solution. The mass transfer coefficients are compared with the widely used correlation of van’t Riet at constant stirrer tip speeds. It can be shown that a van’t Riet correlation enables a robust and reliable prediction of mass transfer coefficients on each scale for a wide range of stirrer tip speeds and aeration rates. The process transfer from single-use bioreactors to conventional stainless steel stirred-tank bioreactors is proven to be uncritical concerning mass transfer performance. This provides higher flexibility with respect to bioreactor equipment considered for specific processes.