In our vision the autonomous reactor can in situ measure the local conditions using integrated sensors, which transfer the chemical or electrical signal to the integrated responsive internal components of the reactor (actuators). These actuators self-adapt and therefore optimize the process on a local level. Therefore, this CRC will investigate how local process conditions in reactors can be detected, formulated in models and translated into actions to always ensure optimal process conditions with constant product quality and maximum yield despite fluctuating quality of the feed coming from renewable resources. As exemplary reaction from hydrogen economy, the hydrogenolysis of glycerol to propanediols is used, which includes biochemical, chemical and mechanical transformation steps exemplarily for fluid-fluid and solid-fluid systems. To achieve our vision, interdisciplinary collaboration between process engineering, materials science and electrical engineering with physicists, chemists, mathematicians and data scientists from Hamburg University of Technology and five research institutions enables the focusing of expertise and unique experimental facilities. From the most brilliant X-ray sources in the world for investigating the tiniest building blocks of matter to the world´s largest Magnetic Resonance Tomograph for process imaging in multiphase reactors, the limitations of future processes on all relevant scales will be discovered and tackled. This CRC sets out to pave the way to SMART reactors, which are able to adapt quickly to changing raw materials, energy supply and reaction conditions.
This group is associated to the DFG Collaborative Research Center SFB 1615 SMART Reactors.