At the Institute of Multiphase Flows a aeriation solution for pressure reactors is being developed, which realizes an optimal gas input and mass transfer with minimized shear stress at the same time. For this purpose, the shear-intensive aeration is separated from the reaction chamber with shear-sensitive enzymes.
The oxidation of L-tyrosine to L-DOPA as a pharmaceutically interesting molecule will be investigated as a model reaction system for the newly developed technology. The biocatalysts to be used will be characterised comparatively under normal and high pressure conditions with regard to their activity, selectivity and stability. Laboratory samples and prototypes will be designed for the application of the new aeration and sensor units in the presence of the biocatalysts.The biocatalysts are immobilised on 3D printed structured packings optimised for application under pressure.
Within the scope of the project, the circulation reactor in combination with the spatially separated gassing unit and the carrier structures will be characterized in detail in terms of reaction technology. Fluorescence-optical sensors will be used to monitor the progress of the reaction via the dissolved oxygen concentration. The newly developed sensors will be adapted to the conditions in the prototypes with regard to pressure resistance and pressure change resistance.